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Abstract: 

Different situations in HEP data analysis involve the calculation of confidence intervals for 
quantities derived as linear combinations of observations that follow a Poisson law. Although 
apparently a simple problem, no precise methods exist when asymptotic approximations are not 
accurate. Existing procedures are reviewed, and new approaches are proposed. Their performance 
and range of validity is checked in different benchmarks. In general, the simple methods based on 
error propagation or application of Wilks theorem to MLE show important undercoverage or 
overcoverage for low number of counts. On the contrary, methods based in profiling the likelihood 
or projecting the multidimensional confidence regions obtained with the Neyman construction 
show a much better performance. 
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1. Introduction 
 
This work attempts to solve an apparently simple question arising in different fields, in 
particular in several situations in experimental particle physics, on how to set a confidence 
interval with good coverage properties for a linear combination of Poisson means. 
 
Some practical examples commonly found in particle physics include: 
• Negative weights. Calculation of errors on “counts” when using simulations based on 

generators which include events with negative weights [1]. In this case, some events are 
assigned with a negative weight of -1, being the “counts” for a particular range of the 
kinematics calculated as the difference between the positive and negative counts in that 
range. Rising question like what to do with the case a negative number for a quantity 
one would expect to be positive or how to set an error on the case when no counts are 
observed. This case corresponds to the difference of two Poisson observations. 

• The so called “subdominant background”. In its simplest version, appears when 
calculating the expected rates for given analysis, where there are several contributions, 
one for a channel with no observed events and a large coefficient (i.e. you generated few 
events because you do not fear that background). For example, if your expectation is 
given by Nexp=µ1+100 µ2, observing 𝑛𝑛�⃗ =(100,0), how large is the error? This is 
obviously also a linear combination of Poisson, where one of the coefficients is much 
larger than the other. 

• Background subtraction. Often one gets an estimate of a given signal as the subtraction 
of two observations (both following a Poisson distribution) with maybe some scaling 
factor, which turns to be the same problem. 

 
Despite the apparent simplicity, it will be shown that none of the commonly used methods 
provide good statistical properties when the number of involved counts is small. Several 
alternatives will be proposed and reviewed. 
 

1.1 Posing the problem 

In this work we will address the problem to define a confidence interval of a quantity 𝜇𝜇′ =
∑𝛽𝛽𝑖𝑖 𝜇𝜇𝑖𝑖, a general linear combination of the means, �⃗�𝜇, of a set of independent Poisson 
distributions given a set of observations 𝑛𝑛�⃗ . For each of these observations we expect the 
probabilities P(ni|mi), to follow a Poisson law. Let me stress that we have one and only one 
observation for each of the different means. 
 
We will be restricting to the case of only two Poisson distributions. All the described methods 
can be extended to more dimensions, although for some of them the computation time might 
become an issue for higher dimensions. All the discussion and examples will be based on giving 
a central confidence interval at 68.3%, which is the usual definition for an experimental error, 
but its application to other CL, upper or lower limits is straightforward. 
 
The goal is finding methods providing good frequentist coverage, with the shortest possible 
interval. We favor methods that provide approximate coverage, permitting moderate 
undercoverage, with respect to methods guaranteeing coverage above 68.3% but showing in 
practice large overcoverage. This in general can be tuned in the different models.  
 
Without loss of generality, we can write the linear combination as 𝜇𝜇′ = 𝛽𝛽1 𝜇𝜇1 +  𝛽𝛽2 𝜇𝜇2 =
𝐾𝐾(cos(𝜃𝜃)  𝜇𝜇1 + sin(𝜃𝜃)  𝜇𝜇2). The scale K can be ignored in the following calculations, since any 
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CI obtained with K=1 can just be scaled back multiplying by K. We can then treat the general 
case with just one parameter that represents a rotation in the plane of the possible values for �⃗�𝜇. 
Furthermore, we can build a full rotation matrix R and a full rotated set of means as 𝜇𝜇′���⃗ = 𝑅𝑅 𝜇𝜇, 
the first coordinate in 𝜇𝜇′���⃗  being the linear combination we are interested in, our parameter of 
interest. The second represents our nuisance. 
 

1.2 Benchmarks 

 
The performance of the methods is studied on different benchmarks. 
 
In first place the case of negative weights, which correspond to θ=−π/4, is explored for a range 
of means between 0 and 10, where non-asymptotics effects are important. A special focus is set 
on the case of subtraction of two null observations 𝑛𝑛�⃗ = (0,0). Checks were also performed on 
the regime of large means as a comparison with asymptotic predictions. 
 
The second benchmark, subdominant background, corresponds to θ0.   
The case when one of the means is large ~100 and scaled with a small angle and the other is 
close to 0, will be studied. 
 
Consistency checks were also performed with θ=0, and θ=π/4 (corresponding to the sum of two 
Poisson observations). Both cases correspond to a pure Poisson law and are confronted with the 
exact Poisson CI. The case of θ=π/4, is also used for checks, since it corresponds to the sum of 
two Poisson which follows a Poisson law too.  
 
 

2. Methods to estimate the confidence intervals 

2.1 Error propagation 

Many physicists would start by solving this problem with the naïve approach of the so-called 
“error propagation” of gaussian errors. This method implies two approximations, replace the 
dependence on the variables by the first order Taylor expansion (which is exact in our linear 
case) and assume each of the variables follows a Gaussian distribution with 𝜎𝜎 = √𝑛𝑛, which is 
not correct unless the number of counts, n, is large. As it will be shown later, this approach 
significantly undercovers if it is not the case. In the limit of no observations, the predicted 
interval will have zero-length. 
 
Often this is overcome with the error propagation of the “Garwood intervals” [2], central CI for 
a Poisson distribution, but it will we shown that on the contrary, this method tends to 
significantly overcover even for moderate number of counts.  As an example, it will predict an 
interval of ±2.6 for the negative weights case and no observations, while other methods 
described below provide good coverage for much shorter intervals of ±1.5 or ±2 
 

2.2 Successive approximations 

An alternative method, proposed in [3] is based on successive approximations starting from a 
central limit theorem for the studentized statistic, 𝑌𝑌 = 𝜇𝜇′−𝐾𝐾1

�𝐾𝐾2
, where K1 and K2 are the first two 

moments in 𝐾𝐾𝑙𝑙 = ∑ 𝛽𝛽𝑖𝑖𝑙𝑙𝑛𝑛𝑖𝑖𝑖𝑖 , corresponding to the mean and variance of the observed counts. 
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Approximate CI are expressed on relatively simple algebraic expressions calculated from these 
moments. 
 
This method is appealing because it has a simple implementation, even for a high 
dimensionality and provides a faster convergence to asymptotics with good approximate 
coverage even for counts ~ 1. However, it still predicts 0-length intervals for 𝑛𝑛�⃗  = (0,0) and in 
general undercovers when any of the observations is zero. 
 
In this work, a modification is proposed to overcome this problem. Moments are calculated 
replacing the cases of 0-counts with one, nmax(n,1), in the calculation. The resulting CI must 
be corrected for the induced off-set on the mean whenever a 0 is replaced by 1. In this way, a 
non-zero-length interval centered in the observation is obtained, with rather good empirical 
coverage properties.  
 

2.3 “MINOS errors” 

Another common approach, usually known as MINOS error [4] due to its implementation in the 
widely used MINUIT program [5], proposes a calculation as follows. One first performs a 
Maximum Likelihood Estimation, MLE, minimizing the likelihood as a function of the 
parameter of interest (POI) and nuisances. Then, contours are drawn corresponding to the 
parameters (both of interest and nuisances) whose log-likelihood varies by ½ from the 
minimum. The CI on the POI is the projection of this contour onto the axis corresponding to the 
POI, i.e., the set of all possible values of the POI along that contour. 
 
This is equivalent to the likelihood ratio construction and the asymptotic properties (Wilks 
theorem [6]) guarantee that for a sufficiently large number of observations it must converge to a 
χ2 with ndof equal to the number of parameters. Under these conditions and with two variables, 
the drawn regions should correspond to a 39.4% interval and its projection into one axis to a 
68.3%. 
 
The interpretation as a rotation is convenient in this case because the (orthogonal) change of 
variables 𝜇𝜇′���⃗ = 𝑅𝑅 �⃗�𝜇, preserves the MLE properties. Hence one can build the likelihood function 
in the simplest case, as the product of that of two independent Poisson, calculate the contours on 
those variables and then project according to a rotated axis with any given angle θ to obtain our 
desired CI for the variable of interest. This is illustrated in Fig 1, where different contours at 
shown for the case of observing 𝑛𝑛�⃗ = (1,1). The projection of the 39.4% contours for different 
rotations is represented by the red arrows.  Fig 2 shows other examples of the contours. 
This is a relatively simple method, that by construction reproduces the asymptotic expectations, 
but it will be shown that undercovers for small number of counts. 
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Figure 1: Example of contours for fixed values of  the likelihood function for n�⃗ = (1,1), transformed to 

the corresponding χ2  tail probabilities for ndof=2. The red arrows show the projected 68.3% CI for 
different examples of rotations. 

 
Figure 2: Example of contours for fixed values of  the likelihood function for n�⃗ = (0,0), (1,0) 𝑎𝑎𝑛𝑛𝑎𝑎 (1,1), 

transformed to the corresponding χ2  tail probabilities for ndof=2 

 

 

2.4 Projection of 2D confidence regions 

A new approach is proposed, based on the calculation of the 2D confidence regions using the 
Neyman construction [7] based on test inversion for the product of two independent Poisson 
distributions and following a similar approach as described above to project these into a rotated 
axis corresponding to the concrete linear combination. The calculation would be as follows: 
• For a given observation, 𝑛𝑛�⃑ ,  scan the plane of the possible values for the (non-rotated) 

Poisson means 𝜇𝜇  
• For each point in this plane, sort/rank the possible 𝑚𝑚��⃑  according to your preferred ordering 

rule (in this work probability ordered and Feldman-Cousins were tested)  
• For each �⃑�𝜇  calculate a “confidence level” for  𝑛𝑛�⃑   from the discrete sum of the Poisson 

probabilities P(m1|µ1) P (m2|µ2), starting from the highest ranked 𝑚𝑚��⃑  until 𝑚𝑚��⃑ = 𝑛𝑛�⃑ , being P 
the Poisson probabilities. 
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• Draw the desired contours separating the regions below and above a given CL, as shown in 
Figs. 3 and 4. 
 

To obtain the desired CI on the linear combination we need to project these contours using a 
rotated axis as was done in the previous case. Project the 68.3% CL contours would guarantee 
coverage of at least 68.3% in the projected interval but will largely overcover in most cases. In 
this work it is chosen to project the 39.4% instead. This will provide a 68.3% coverage 
asymptotically. For smaller number of counts, it will be shown the projection implies a 
moderate undercoverage, that is partially compensated by the overcoverage produced by the 
discrete nature of the Poisson problem, leading to an acceptable frequentist coverage in most 
cases. As can be seen in the comparison of Figures 3 and 4, both ordering methods produce 
rather different contours at low number of counts. This is mostly due to the fact of Feldman-
Cousins being more aggressive (produces less overcoverage) especially for the treatment of the 
case of 𝑛𝑛�⃑ = (0,0) .  This point in the plane may have a large probability, but a low likelihood 
ratio. Therefore, it may be ranked on the top or not depending on the method, thus changing 
drastically the confidence regions. It is worth noting that the undercoverage appears when 
projecting, by definition the 2D confidence regions (with one or other ordering method) 
guarantee the coverage. 
 

 
Figure 3: 2D confidence regions at 39.4%, 68.3% and 89.6% obtained with the full Neyman construction 

at different CL for for n�⃗ = (0,0), (1,0) 𝑎𝑎𝑛𝑛𝑎𝑎 (1,1) , using probability ordering 

 

 
Figure 4: 2D confidence regions at 39.4%, 68.3% and 89.6% obtained with the full Neyman construction 

at different CL for for n�⃗ = (0,0), (1,0) 𝑎𝑎𝑛𝑛𝑎𝑎 (1,1), using Feldman-Cousins ordering 

 



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
2
4
0

CI for linear combinations of Poisson observations Francisco Matorras 

7 

2.5 Profile-based methods 

Increasing the complexity, one could use a profile-based method, in which the first component 
of 𝜇𝜇′���⃑  is treated as POI and the rest as nuisances. There are different alternatives to implement 
these methods and we have chosen to follow the ideas proposed in [8]: “a full Neyman 
construction over both the parameters of interest and the nuisance parameters, using the profile 
likelihood ratio as an ordering rule”. In practice the same procedure as above is followed, 
replacing the ordering rule by the profiled likelihood ratio, PLR, where the profiling is 
performed on the nuisance, in our case the linear combination orthogonal to that of our interest. 
It is worth noting that the PLR, by definition, does not depend on the nuisance, but there is still 
a mild dependence on it of the 2D contours as shown in Fig. 5, because the probabilities still 
have a dependence.  Thus, we need to again project onto the rotated axis, although in this case 
we have only one dof left and hence will project the 68.3% contour. Note also that since the 
profiling depends on the actual coefficients of the linear combination the 2D contours are not 
independent of the rotation angle any longer. 
 

 
Figure 5:2D confidence regions at 39.4%, 68.3% and 89.6% obtained with the full Neyman construction 

at different CL for for n�⃗ = (0,0), (1,0) 𝑎𝑎𝑛𝑛𝑎𝑎 (1,1), with an ordering based on the profiled likelihood ratio 
for θ=−π/4,. The red arrows show the approximate projected CI. 

 

2.6 Additional methods 

Some other methods that were explored did not provide good results but are outlined here for 
completeness. 
 
In principle one could try to integrate the nuisance out of the pdf, but no well-motivated priors 
where found except flat distribution in a bounded box, whose results turn to be dependent on the 
assumptions made to bound this box.  
 
It was also attempted to take advantage of the “near independence” of the POI and nuisance, 
trying to marginalize the pdf of the POI for any possible value of the nuisance. Fig. 6 illustrates 
the situation for two examples when one follows a similar procedure as in the previous cases, 
with the pdf obtained in that way. One can observe the mild by divergent dependence remaining, 
which requires to use some alternative method (i.e. Garwood error propagation) to define the 
bounds, with similar problems as in the previous case. 
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3.Results  

3.1 Confidence Intervals 

Figure 6 and Table 1 show some examples of the CI obtained by the different approaches 
described for different observations in the benchmark I (subtraction of two Poisson). We can 
appreciate that for moderate number of counts all methods give similar intervals except for 
“Garwood intervals propagation” and “marginalization”, these giving significantly wider 
intervals. On the contrary, for low number of counts especially for (0,0), the results are very 
different, with the mentioned case of the zero-length intervals predicted in some cases. 
Similarly, Fig 7 shows the large spread of predictions of the different method for the benchmark 
II. 

 
Figure 6: Confidence intervals obtained with the different methods described in the text for benchmark I 
(negative weights), when the number of positive and negative counts are the same (top), the number of 

negative counts is fixed (rest of the plots). The black box shows the plain error propagation for 
comparison. 
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Figure 7: Confidence intervals obtained with the different methods described in the text for benchmark II 
(subdominant background), for an angle of θ=0.01 (left) and θ=0.1 (right). In all cases n2=0. The black 

box shows the plain error propagation for comparison. 

 

 
Table 1 Confidence intervals according to the different methods for the benchmark I and n�⃗ = (0,0),
(1,0) 𝑎𝑎𝑛𝑛𝑎𝑎 (1,1). 

METHOD 𝒏𝒏��⃗ = (0,0) (1,0)  (1,1) 
Error prop. [0.00 0.00] [0.00 2.00] [-1.41 1.41] 
Garwood prop. [-2.60 2.60] [-1.95 3.95] [-3.25 3.25] 
Succ. Approx. [0.00 0.00] [ 0.38 2.63] [-1.89 1.89] 
Mod Approx. [-1.89 1.89] [-0.89 2.89] [-1.89 1.89] 
MINOS [-0.50 0.50] [0.19 2.36] [-1.56 1.56] 
2D prob-ord [-1.43 1.43] [-0.64 2.86] [-1.89 1.89] 
2D FC [-0.72 0.72] [-0.35 2.13] [-2.12 2.12] 
2D profile [-1.29 1.29] [-0.35 2.75] [-1.98 1.98] 
Marginalized [-2.34 2.34] [-1.51 3.82] [-2.96 2.96] 

 

3.2 Coverage tests 

To evaluate the performance of the different approaches, the frequentist coverage is evaluated as 
a function of the means of the two Poisson observation for the different scenarios. The 
frequentist coverage for a given �⃗�𝜇 and θ is calculated as follows. A probability P(𝑚𝑚 ����⃗ |�⃗�𝜇) is defined 
as a product of the two independent Poisson laws, for all 𝑚𝑚��⃗  with a probability above a given 
threshold (a cut off such that a total probability close to 100% is achieved with a finite number 
of observations) a CI is calculated for the given rotation. The coverage is the sum of the 
probabilities of the 𝑚𝑚��⃗ , such that the CI includes the rotation of the mean µ´. Note, that given the 
discrete probabilities no toy MC is involved. Figure 8 summarizes the results for benchmark I, 
the different colors representing the coverage. Our goal is to have orange in its different shades, 
showing good coverage or moderate over/undercoverage, while regions both with severe over 
and undercoverage should be avoided (red, yellow, white).  
 
We can draw some conclusions. Gaussian error propagation is naïve, but the coverage is 
acceptable if both means are above 2 or 3.  Garwood error propagation largely overcovers and it 
is not recommended. MINOS approach improves the coverage, w.r.t. the error propagation, but 
still shows some severe undercoverage regions. The successive approximation method improves 
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the coverage at intermediate means but also does not perform well for small means. This is 
cured with the proposed modification of this method. The different 2D approaches provide 
better coverage properties (especially for profile based) if more accurate CI needed.  
 
Equivalent studies performed on benchmark II lead to similar conclusions. 
 

   

  

     
Figure 8: Coverage tests for benchmark I for a) Gaussian error propagation, b) Garwood propagation c) 
MINOS, d) successive approximations, e) modified successive approximation, f) pseudomarginalization, 

g-i) 2D projection for Feldman-Cousins, probability and PLR ordering 

 

4. Summary and conclusions 
 
Several situations in Particle Physics data analysis involve the estimation of a confidence 
interval for a quantity that is derived from a linear combination of others that follow a Poisson 
distribution. In this work some of the usual approaches to solve the problem are revised, 

a) b) c) 

d) e) f) 

g) i) h) 
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demonstrating that their performance is non-optimal. Different methods based on the profiling 
or projection of 2-dimensional Neyman-constructed confidence regions are proposed. 
Their performance was evaluated calculating the frequentist coverage for a wide range of 
parameters. Although none of the methods is perfect in all situations some general conclusions 
can be drawn. The simple error propagation of “gaussianized” errors, provides reasonable 
coverage unless the means of the Poisson distributions are at or below 2-3. The common 
extension of propagate the Garwood intervals is not recommended, since it leads to sizeable 
overcoverage even for moderate means. The proposed method based on successive 
approximations has a simple implementation, even for multiple Poisson distributions, and 
improves the coverage, but still fails to provide good coverage for small means.  A promising 
modification is proposed that cures this problem, providing a good coverage throughout the 
whole parameters space. However, it does not rely on well-motivated statistics justification, 
being just empyrical. The MINOS approach also fails to provide good coverage for means at or 
below 1. 
 
If more accurate CI are needed, three different method are proposed based on the Neyman-
constructed 2D confidence regions, which are projected onto a rotated axis whose angle 
represents the mixing of the two Poisson counts. Three ordering rules where explored, Feldman-
cousins, probability ordered and profile likelihood ratio, based. These provide much better 
coverage properties, the first two additionally permit an interesting visual interpretation. As a 
counterpart, these are more complex to implement, for example for simple situations like setting 
an error bar on a histogram. For these cases look-up tables can be provided, since only a finite 
number of estimations are needed, since the problem is discrete and simple methods can be used 
once the number of counts is far from zero. 
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