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Optimization problems in HEP often involve maximizing a measure of how sensitive is a given
analysis to an hypothesis with respect to another hypothesis; the latter is referred to as null hypoth-
esis and in a frequentist framework is tested against the former, which is referred to as alternative
hypothesis.
In most cases, it is desirable to fully compute the expected frequentist significance, accounting
for all sources of systematic uncertainty and interpreting the result as the real sensitivity of the
analysis to the effect sought. Sometimes, however, either computational or conceptual reasons
can favour the use of different or approximate figures of merit, often collectively called "pseu-
dosignificances", which exhibit different properties depending on the relationship between the
hypotheses being tested.
This work will review the most common definitions of sensitivity (pseudosignificances), and com-
pare them with the fully frequentist significances computed in toy analyses spanning a spectrum
of typical HEP use cases. A connection will be made with the concept of Bayes Factor, and
evidence values from Bayesian significance tests will be studied and evaluated in the same toy
cases, attempting to build an improved approximate condition-aspecific figure of merit. Finally,
an attempt will be made at transporting to the typical HEP cases a Bayesian solutions to the on-off
problem developed in an astrophysics context.
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1. Introduction

Statistics is all about answering questions. In High Energy Physics (HEP), oftentimes the
question is: if I design the experiment in this or that way, will we be able to observe the phe-
nomenon we seek, assuming the phenomenon itself occurs? The question is usually generalized in
the context of experiment design as an optimization problem: which are the experimental settings
that maximize my ability of observing the phenomenon I seek, assuming the phenomenon itself
occurs? In statistics it is common practice to frame such problems as hypothesis testing problems;
a null hypothesis , usually taken as the well established best-theory-so-far, is tested against an al-
ternative hypothesis. The sought phenomenon does not necessarily consist in new, unobserved
physics; in general, it just corresponds to a different hypothesis than the well-established one. In
HEP, the most common tests involve a null hypothesis consisting in event counts originated by
well-known physics processes (background); the alternative consists in event counts originated by
a sum of the counts from well-known physics processes and the counts from an additional process
(signal), to form the signal-plus-background hypothesis. In the following we use the notation S for
the signal counts and B for the background counts.

In this framework, the optimization of experiment design aims to predict to a good degree of
approximation the sensitivity of the experiment, and to compare the expected sensitivity of various
experiments (or configurations of the same one) in order to decide the best one to pursue.

A suitable definition of sensitivity is needed. For problems of optimizing experiment design,
the most common definition of sensitivity is that of estimated median significance; this is derived
from the general calculations of the significance associated to an experiment, by replacing the
observed counts with the expectations of the input models. The expected counts, when used to
replace the observed ones, are commonly know as the Asimov dataset; the procedure is better
described in 2.1. A peculiar alternative definition of sensitivity is strictly linked to maximizing
the probability of getting a predefined value of significance, assuming the signal is present, as
described by Punzi [1].

2. Framing the problem

The classical framework of hypothesis testing will be employed in this Paper. The null hypoth-
esis, denoted H0, is taken to be the model that represent the best of our knowledge; the alternative
hypothesis, denoted H1, usually represents a model that introduces some new physics process on
top of the predictions from H0, but in general just represents the model that describes the process
whose chance of observing we want to maximize.

The two hypotheses are parameterized, often without loss of generality, as nested models
depending on some parameter (or vector thereof) θ ; the notation H0 and H1 will be then maintaned
to implicitly mean H0 = H(θ = 0) and H1 = H(θ = θi), with θi 6= 0.

In the common case of Poisson counts, we express the models in terms of the expected signal
counts S and of the expected background counts B, hence H0 = Pois(B) and H1 = Pois(S+B). The
parameter that makes the hypothesis nesting explicit is then the expected signal count (zero for H0,
non-zero for H1).
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A criterion to reject the null hypothesis is then to reject H0 if the observed count lies in a critical
region defined by a (desirably small) probability α of rejecting the null hypothesis conditioned to
the null hypothesis being true. The formal definition for this probability is α = P(re ject H0|H0).
The power of the test is defined as the probability β of correcly rejecting H0 conditioned to the
alternative hypothesis being true. The procedure is illustrated in figure 1.
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Figure 1: An example of hypothesis testing.

2.1 The Asimov dataset

When using the formulas described in Section 3 as figures of merit for the optimization of
an analysis, it is important to not use the observed data in their evaluation. This is achieved by
substituting the number of observed events—in all the formulas that depend on it—with a data set
based only on the available simulated models. In order for such a data set to be representative (and
thus, in this case, useful for estimating the expected significance to be maximized), it is commonly
defined as the data set such that using it to evaluate estimators for all the parameters of the model,
one would obtain the true parameter values. In practice, this is shown to correspond to the data
set corresponding to the expectations computed from a very large simulated sample; such a dataset
is known in literature as the Asimov dataset [2]. It is important to note that while the statistical
errors due to the limited statistics of simulated samples are usually accounted for (e.g. as nuisance
parameters in maximum likelihood fits), they are suppressed for the computation of the Asimov
data set (the underlying idea is that in the limit of a very large sample these fluctuations would be
negligible).
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3. Review of figures of merit in literature

The typical HEP use case illustrated in Fig. 1 involves the comparison between a known, of-
tentimes large, background count and a slightly larger count that accounts for both the background
and a (usually small) signal. Any uncertainty in the background count would reduce the chances of
observing a signal, and thus an elementary definition of significance involves comparing the signal
counts S with the statistical uncertainty in the background count B; in case of Poisson counts, the
expression is then Zsb := S√

B
. This definition corresponds to the bare minimum needed for observ-

ing a signal, and for this reason is often used in order to optimize an analysis for setting limits on
the signal production cross section (a quantity proportional to the counts). It is worth to note that
this expression can be derived directly from Poisson calculations in the limit of large average back-
ground, where the Poisson distribution for the background can be approximated with a Gaussian
distribution. This expression for the sensitivity breaks down (diverges) for low background counts.
Figure 2 (left) details its behaviour for a variety of combinations of signal and background counts.

Figure 2: The pseudosignificances Zsb (left) and Zssb (right), computed in a grid of values for the expected
number of signal (S) and background (B) events. The grid scan for Zsb is zoomed into the low-background
region, where the expression diverges.

In case the existence of a signal has already been ascertained in past experiments, the opti-
mization is performed to yield the best cross section measurement possible, and a reasonable figure
of merit compares the signal with the overall statistical uncertainty in the joint S+B Poisson count,
yielding a sensitivity Zssb := S√

S+B
. A nice perk of this definition is that the denominator does

not break down for small background counts; however, if the background counts are affected by a
systematic uncertainty, this simple formula can significantly overestimate the proper significance,
as it will be shown later. Figure 2 (right) details the behaviour of this figure of merit for a variety
of combinations of signal and background counts.

In order to avoid the problems at low background counts of Zsb, Byutikov and Krashnikov [3]
introduced a formula based on the difference between the statistical uncertainties in the S+B and
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in the B only counts, S12 := 2
[√

S+B−
√

B
]
. The same formula has been studied by Bartsch and

Quast [4] under the name Q. This formula breaks down neither for small S nor small B counts, as
illustrated in Fig. 3 (left). In the limit of both high signal and background counts, some colleagues
argued in private correspondence that limS→∞,B→∞ Z12 =

S√
B

, but Fig. 3 (right) suggests otherwise;
in fact, the two formulas converge to each other in the limit of high background and low signal
counts. An interesting extension is the case in which the systematic uncertainty is not zero, but this
approach is left for future studies.

Figure 3: The pseudosignificance Z12 (left) computed in a grid of values for the expected number of signal
(S) and background (B) events; a comparison (right) with the simple Zsb expression outlines the evident
shortcomings of the latter.

A way of naïvely accounting for systematic uncertainties in the background counts consists
in comparing the signal count with the overall uncertainty in the background count, approximated
as a quadratic sum of the background statistical and systematic uncertainties, Zberr := S√

B+∆B2 ,
where ∆B is the systematic uncertainty in the background count. The behaviour of the formula
for various signal and background counts is shown in Fig. 4 (left). This formula represents an
immediate extension of Zsb, to which in fact it converges in the limit ∆B→ 0, as illustrated in
Fig. 4 (right). Since it accounts for the background overall uncertainty, Zberr is often used to
optimize for a discovery. It is interesting to note that Zberr diverges significantly from Zsb already
for a systematic error on B of 1–5%, in line with the previous consideration on Zsb.

Probably the most used pseudosignificances in HEP, apart from computation power consid-
erations, is the log-likelihood ratio. Wilks theorem is used to derive confidence intervals at a
predetermined confidence level. In the archetypical HEP problem, Wilks theorem is actually not
satisfied, because H0 lies at the boundary of the allowed values for S (unless H1 does consist in a
modified model that predicts deficit of events with respect to H0, which can happen in HEP [5]);
however, it has been shown [2] that the asymptotic properties for the Type I errors are unaffected.
Consequently, it is still possible to obtain a meaningful expression for the significance by plugging
in the appropriate likelihood function. Li and Ma [6] have found a solution valid for Poisson counts
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Figure 4: The pseudosignificance Zberr (left) computed in a grid of values for the expected number of signal
(S) and background (B) events; a comparison (right) with the simple Zsb expression outlines the extent to
which ignoring the systematic error on the background yields is a good approximation.

in the so-called on/off problem. In HEP jargon, the problem is framed in terms of Poisson counts
in a given region (on region) where the background counts are measured in a sideband (off region).
The Li and Ma formula is expressed in terms of the counts in the on and in the off regions as:

ZPL :=
√

2

√
nonln

non(1+ τ)

ntot
+noffln

noff(1+ τ)

ntotτ
(3.1)

where the transfer factor τ is defined as the ratio between the background counts in the off
and on regions, τ := nb,off

nb,on
. In this paper, the transfer factor is taken to be unity, and the problem is

reframed in terms of background yields in the signal region. The dependence on τ will be studied
in an ongoing study of broader scope. Figure 5 (left) illustrates the behaviour of ZPL for various
sets of signal and background counts.

When the systematic uncertainty in the background counts can be considered negligible, then
an expression for the significance can be obtained from an approximation of the Cowan-Cranmer-
Gross-Vitells asymptotic formula [2] for known B:

√
q0,A :=

√
2((S+B)ln(1+

S
B
)−S (3.2)

The formula is illustrated in Fig. 5 (right) for various values of S and B counts. This expression
can be easily expanded in powers of ln( S

B), yielding √q0,A = S√
B
(1+O( S

B)). This highlights the
fact that the simple formula Zsb is a good approximation of the exact significance only in the case
of S << B; unfortunately, in literature Zsb has been often thought to be useful for the general case
of large S+B, hence leading to possibly catastrophic failures when S∼ B. Figure 6 (left) illustrates
the extent to which the two formulas diverge. Figure 6 (right) shows a comparison of √q0,A with
the Li–Ma expression ZPL, showing that convergence is achieved for higher background counts,
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Figure 5: The pseudosignificance ZPL (left) computed in a grid of values for the expected number of signal
(S) and background (B) events; a comparison (right) with the asymptotic expression in case of background
known with negligible uncertainty,√q0,A, outlines the extent to which the two expressions approximate each
other.

as expected because of the asymptotic nature of √q0,A. It can also be shown that the asymptotic
expression does not converge well to ZPL for values of the significance larger than ∼ 10σ ; this is
probably because the approximations made in both formulas entail a suboptimal modelling of the
tail probabilities. In a broader-scope study in preparation, I will explore the inclusion of higher-
order approximations [7, 8, 9] to the asymptotic expression for the likelihood ratio.

A fully frequentist solution to the on/off problem can be derived by rephrasing it in terms of
the conditional binomial probability for the on/off events to be divided as observed [10], resulting
in the formula:

ZBi :=
√

2erf−1(1−2
B( µon

µtot
,non,1+noff)

B(non,1+noff)
) (3.3)

The expression is here computed for µon = S+B, µoff = B, corresponding to assuming a unity
transfer factor τ = µoff

µb
= 1, without loss of generality; the transfer function somehow encodes the

increase of the uncertainty in the background counts due to estimating them in a sideband region.
An ongoing study with broader scope will examine the dependence of such expressions on the
transfer factor. Since we are interested in the expected significances for optimization purposes, as
before the observed counts Nobs are substituted by the Asimov data set in both on and off regions for
obtaining the expected significance. Fig. 7 illustrates this important expression for the significance.
The formula is reportedly good for optimizing cuts, with the caveat that a handful signal events
should survive the cuts for the formula to hold. A practical threshold is indicated in Ref.[10] to be
around 5 events.

The introduction of such a formula has spanned different communities, having been introduced

6
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Figure 6: The pseudosignificance √q0,A (left) computed in a grid of values for the expected number of
signal (S) and background (B) events; a comparison (right) with the simple Zsb expression outlines the
shortcomings of the latter.

in statistics by Przyborowski and Wilenski [11], in HEP by James and Roos [12], and in Gamma
Ray Astronomy (GRA) by Gehrels [13]. An in-depth review of Zbi can be examined in Ref. [10],
where a hybrid recipe, involving Bayesian-style averaging and frequentist tail-integral calculations,
has also been derived under the name ZΓ. The latter formula has been analytically demonstrated
to be equivalent to ZBi; because of that, the latter is used in this paper as a placeholder for both
computations.

3.1 The Punzi significance formulas

A frequentist criterion for the definition of sensitivity of an experiment has been given by
Punzi [1]. The Poisson counts for the two hypotheses is written down explicitly, H0 = Pois(B) and
H1 = Pois(S+B). Type I and II error rates are then parameterized as α = P(re ject H0|H0) and
1−β = P(re ject H0|H1), and a confidence level CL for the limits in case of no discovery is chosen
as a reference. The Z-scores needed to obtain a one-sided Gaussian test at significances α and β

are then denoted as a and b, and an expression for the minimum significance to reach the desired
probability is derived:

Smin :=
b2

2
+a
√

B+
b
2

√
b2 +4a

√
B+4B (3.4)

The expression is illustrated in Fig. 8 (left) for various background counts and significance
levels. It is important to note that, contrary to all the pseudosignificances previously examined,
this definition does not depend on the expected number of signal event. As a consequence, this
expression can be—and often is—used in optimization problems when the signal model is not
defined a priori. The arbitrariness in the choice of the parameters a and b (or equivalently of α

7
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Figure 7: The pseudosignificance ZBi, computed in a grid of values for the expected number of signal (S)
and background (B) events.

and β ) is sometimes criticized by orthodox exponents of the frequentist school, and will not be
discussed here.

A further refinement to this formula stems from empirically accounting for the differences
between the Poisson and Gaussian integral tails, yielding the improved formula illustrated in Fig. 8
(right):

Simproved
min :=

a2

8
+

9b2

13
+(Smin−

b2

2
) (3.5)

For increasing background counts, the regular and the improved Punzi formulas maintain a
certain difference between them, as illustrated in Fig. 9 and explained by the fact that the Poisson
and Gaussian tail integrals are non-negligibly different even in the high-counts regime.

A fair summary for this pseudosignificance expression is that it stems from an attempt at
finding a figure of merit suitable for analysis optimization in the absence of a signal model (or
in cases in which there are multiple signal models that one does not want to prioritize one over
the other); it is rooted in a frequentist approach and expressed as a minimum number of signal
events needed to reach a given significance, i.e. it is naturally cast in an optimization framework
as a problem of maximization of selection efficiency. Because of this, a comparison with other
expressions can be done only when such expressions can be cast in the same framework as a ratio
with a numerator that can depend on the signal counts (that is then subject to the maximization)
and a denominator that cannot depend on the signal counts. Punzi in his paper shows an example
comparison with Zsb and Zssb; further comparisons will be pursued in a study with broader scope.
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Figure 8: The minimum number of events needed to reach the desired power and significance, according to
the basic Punzi formula Smin (left) and to the improved expression Simproved

min (right).

3.2 Bayesian evidence values

The Li–Ma problem can be recast in a Bayesian framework, as shown by an application in
GRA by Ref. [14]. A Bayesian Z-score is proposed as a function of the odds B01 of the background
model over the signal model as:

Sbayes :=
√

2erf−1(1−B01), (3.6)

where B01 is defined as a function of Non, Noff, and α defined as the ratio of exposures for the on
and off region. The odds of an hypothesis against another are commonly called Bayes factor, and
represent the standard Bayesian way of expressing favour towards an hypothesis in comparison to
another one, rather than the frequentist procedure of relying on the error rates. The full expression
for B01 can be found in Ref. [14], and relies on the hypergeometric function 2F1(a,b;c;z); issues
in the numerical convergence of the implementation—provided in Ref [14]—of such function for
large values of its arguments forced us to restrict the phase space study to relatively low signal
and background yields. Such an issue has not been noted by the original paper, likely because the
field of GRA is usually characterized by very low (compared with the typical HEP case) signal and
background yields. Figure 10 (left) shows the result of the phase space scan, whereas Fig. 10 (right)
outlines the properties of Zbayes with respect with the frequentist √q0,A. It is very clear that a real
comparison between this pseudosignificance and classic expressions can—if at all—be done only
in the low counts regime, but the behaviour at higher counts is radically different and a source of
concern. I think more studies are needed before considering Eq. 3.6 for an analysis of real physics
cases.

Another aspect to be considered is that the Zbayes formula originates from a simple analogy
with the concept of Z-scores, as outlined by Eq. 3.6. A more rigorous approach, such as the one

9
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Figure 9: Comparison between the minimum number of events needed to reach the desired significance
in the basic (black lines) and improved (red lines) Punzi formulas, for a fixed significance level and three
different powers.

proposed by Ref. [15], will be pursued in future studies.

4. Summary and future work

Various definitions of sensitivity for a counting experiment in the typical High Energy Physics
case have been studied. The fully-frequentist definition of expected significance has been taken
as a reference, and compared to various simplified formulas, obtained by means of different ap-
proximation assumptions; the range of validity of such approximations have been investigated and
highlighted. A Bayesian figure of merit, proposed for Gamma Ray Astronomy, is found problem-

10
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Figure 10: The pseudosignificance Zbayes, computed in a grid of values for the expected number of signal
(S) and background (B) events; a comparison (right) with the frequentist expression√q0,A.

atic in that it has an undesirable behaviour for any set of yields typical of HEP problems. Another
Bayesian definition is found in literature to give exactly the same results as the fully-frequentist
solution in the asymptotic regime.

For the time being, we recommend avoiding oversimplified expressions of significance; an-
alyzers should preferentially stick to the profile likelihood ratio method, whose properties are
well-established and that is guaranteed to be optimal thanks to the Neyman-Pearson lemma. One
Bayesian solution has been shown to be equivalent and interchangeable with the full frequentist
solution, but more studies would be needed to explore alternative solutions.

A few questions are left for a later study of larger scope, that is in preparation by the au-
thor. Such questions are: the interpretation of the tunable parameters in the Punzi formulas and
a fair comparison with other figures of merit; the dependence on several pseudosignificances on
the transfer factor τ in the classical on/off problem; the inclusion, in several of the examined for-
mulas, of a parametric dependence on systematic uncertainty in the background counts; the explo-
ration of higher order corrections to the likelihood in case of low counts; the implementation of a
pure Bayesian evidence formula, and its extension to include systematic errors on the background
yields.
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