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Recent studies suggest that important contributions to the Chiral Magnetic Effect (CME) origi-
nate in the pre-equilibrium phase of a collision. While real-time lattice simulations can be utilized
to understand the dynamics of anomalous effects in the earliest stages of a collision, quantitative
predictions of experimental signatures are only feasible once the subsequent transport of the mes-
sengers of the CME through the fireball are understood. This motivates the need of a Chiral
Kinetic Theory for relativistic fermions. In this talk we present a novel approach based on the
world line formulation of quantum field theory that clarifies the relative role of a possible Berry
phase and chiral anomaly that generates topological transitions. Our formulation is Lorentz co-
variant and independent of adiabatic approximations. Our framework allows us to follow ab initio
the fate of the Chiral Magnetic current from the earliest times (via solutions of the Dirac equation
in topological sphaleron backgrounds) through its matching to Chiral Kinetic Theory and finally
to Chiral Magneto-Hydrodynamics. We discuss the implications of our results for quantitative
extraction of the CME in heavy-ion collisions.
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Chiral kinetic theory Niklas Mueller

1. Introduction

Searches for observable consequences of topology-changing sphaleron transition in Quantum-
Chromodynamics (QCD) [1, 2] have attracted great interest. In the context of ultra-relativistic
heavy-ion collisions, a striking manifestation is the proposed Chiral Magnetic Effect (CME) [3, 4]
where electric currents are generated along strong magnetic fields by means of the chiral anomaly.
Experimental and theoretical interest in chiral transport phenomena is not limited to high energy
and nuclear physics, but ranges from condensed matter [5, 6] to astrophysics [7, 8] and beyond.

Recent heavy ion experiments are not yet conclusive concerning the existence of the CME [9,
10, 11]. This is in part due short life-time of the strong magnetic fields created in ion-ion collisions,
indicating that the origin of these anomalous phenomena is in the pre-equilibrium phase of the
collision. Here, theoretical descriptions of the non-equilibrium quantum-many-body dynamics,
which consistently include the effects of topological transitions and of the chiral anomaly, are
challenging. Ab-initio descriptions of anomalous and topological effects are available at the earliest
moments of a collision, where matter is in a strongly correlated "Glasma"-state, dominated by large
gluon occupancies. In this regime, the real-time dynamics can be described by classical-statistical
lattice simulations [12, 13, 14], which can be systematically computed within the Color Glass
Condensate effective theory [15, 16, 17]. Here, one relies on a non-perturbatively large phase space
occupancy of gluons in the weak-coupling limit (αs� 1) to approximate the early time dynamics
by a statistical ensemble of classical Yang-Mills fields [18, 19, 20].

In this limit, the real time dynamics of fermions, too, can be studied from first principles by
numerically solving the operator Dirac equation for a given gauge field background. In [12, 13,
14] we presented a first step towards quantitative descriptions of early-time anomalous transport
phenomena, by studying the generation of vector and chiral charges during a topological sphaleron
transition in a background magnetic field.

Describing the space-time evolution of the CME at later times is more challenging: As the
fireball expands, gluon occupation numbers drop to unity and classical-statistical simulation tech-
niques break down. Here, simulation results must be matched to effective quantum kinetic theory
[21, 22]. The development of a Boltzmann transport equation within such transport framework is
an important ingredient for systematic analysis of CME phenomenology.

The formulation of a chiral kinetic theory requires to consistently incorporate internal degrees
of freedom, such as color and spin, in a phase space formulation. Specifically, conservation and
anomalous non-conservation of fermionic current by means of the chiral anomaly, as well as in-
teractions of chiral probes with topological and non-topological gauge field fluctuations must be
understood. Many suggestions for such a chiral kinetic theory have been put forward, e.g. includ-
ing a point particle action with a Berry monopole term [23, 24], Wigner functions [27] or effective
theories [25, 26] or hydrodynamic descriptions [28, 29, 30].

In this talk we present an overview over recent progress [31, 32, 33] in deriving a consistent
quantum kinetic theory for chiral fermions from the world-line approach to quantum field the-
ory [34, 35, 36, 37]. Here, an important ingredient is the realization of internal symmetries via
anti-commuting coordinates, with the representation of spin via Grassmann variables going back
to seminal work by Berezin and Marinov [38]. The outline of this manuscript is as follows: In
section 2 we will give a short introduction into the world-line representation of one-loop effective
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actions for fermions. In euclidean formulation we demonstrate the emergence of the chiral anomaly
from the imaginary part of the effective action, related to the emergence of fermionic zero modes.
In section 3 we then demonstrate the emergence of a Berry phase in the non-relativistic limit of
our framework. We show that the Berry phase is unrelated to the chiral anomaly. In section 4,
we outline elements of a generalized phase space construction including spin as anti-commuting
coordinates.

Figure 1: Schematic overview over the space-time evolution of an ultra-relativistic heavy-ion col-
lision and the relevant stages for anomalous transport. At early times, strong magnetic fields are
present and anomalous axial and vector currents are created. Based on the Color Glass Condensate
framework [15, 16], the dynamics of gluons and fermions can be studied with classical statisti-
cal simulations [31, 32, 33]. Subsequently, the fireball created in the collision becomes dilute
and classical-statistical approximations break down. Here, simulation results might serve as initial
conditions for an effective quantum kinetic theory, including internal symmetries such as spin and
color [31, 32, 33]. At late times, the system can be described using anomalous hydrodynamics.
Figure taken from [14].

2. World-line representation of one-loop effective actions

In this section we give a short overview over the world-line representation for one-loop effec-
tive actions in quantum field theory [34, 35, 36, 37]. For simplicity, we consider the QED action
for fermions coupled to background vector and axial-vector gauge fields 1, S[A,B] =

∫
d4x ψ̄[i/∂ +

/A+ γ5/B]ψ . The fermionic part of the path integral yields the fermion one loop effective action,

W [A,B]≡ logdet(i/∂ + /A+ /B) =WR[A,B]+ iWI[A,B] . (2.1)

Here, both the real and imaginary part of the effective action have a heat-kernel expression, which
reads for the real part

WR =
1
8

∞∫
0

dT
T

N
∫
P

Dx
∫

AP

Dψ trexp
{
−

T∫
0

dτ L (τ)
}
, (2.2)

1The latter is understood as a auxiliary variational parameter.

2



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
2
7
7

Chiral kinetic theory Niklas Mueller

which includes the world-line Lagrangian, L = diag(LL,LR), where L/R denote left and right
chiralities, given by

LL/R =
ẋ2

2ε
+

1
2

ψaψ̇a− iẋµ(A±B)µ −
iε
2

ψµψνFµν [A±B] , (2.3)

where ψa are the Wigner-Weyl-symbols of 8×8 Dirac γ matrices with index a = 1, · · · ,6 and ε is
a positive constant (’einbein’) encoding reparametrization-invariance of the world-line parameter
τ . Eq.(2.2) can be interpreted as a quantum mechanical path integral of point particles xµ and
associated Grassmann degrees of freedom for spin ψa, quantized on a circle with periodic and
anti-periodic boundary conditions, respectively.

As discussed in [39], a manifestation of the chiral anomaly is that the imaginary part of the
fermionic effective action is ill-defined. In the world-line framework a heat kernel expression
for the imaginary part can only be found by explicitly violating chiral symmetry. In practice the
world-line expression for the imaginary part closely resembles that for the real-part, containing
the similar single-particle action Eq.(2.3), albeit with the axial-vector gauge field multiplied with a
parameter B→ αB, which is integrated over. Moreover, the imaginary part contains a world-line
insertion, resulting in periodic boundary conditions for the anti-commuting spin variables and in
the emergence of fermionic zero modes. The anomaly equation can then be directly derived from
the imaginary part by variation wrt. the auxiliary Bµ ,

∂µ〈 j5
µ(y)〉 ≡ ∂µ

iδWI
δBµ(y)

∣∣∣
B=0

=− 1
16π2 ε

µνρσ Fµν(y)Fρσ (y) . (2.4)

and setting Bµ = 0. Details of this derivation can be found in [31, 32].

3. The emergence of Berry’s phase

In this section we show that the real-part of the world-line effective action, presented in section
2, contains a Berry phase in the non-relativistic and adiabatic limit. Towards, this end, we continue
the world-line Lagrangian, Eq.(2.3) to Minkowskian metric g = diag(−,+,+,+) and we further
include a constraint ẋµ ψµ

2E +mψ5 = 0 to remove unphysical degrees from the spectrum2. For massive
fermions and in proper time gauge τ = ct

√
1− (v/c)2,

√
−ż2 = 1, where ż2 = (dxµ/dτ)2, the non-

relativistic action is S =
∫

dτL =
∫

dt c
√

1− (v/c)2L , with v = dx/dt. At O(v/c2) this can be
written as

LNR =−mc2 +
1
2

mv2 +
i
2
(ψiψ̇ i−ψ0ψ̇0)−A0 +

v
c
·A+

S · (
[
v/c−A/(mc2)

]
×E)

mc
+

S ·B
m

+O

(
v3

c3

)
,

(3.1)

where we have now changed notation in accordance with the Minkowskian metric ψ4 → ψ0 and
where i = 1,2,3, with a corresponding Hamiltonian

H ≡ mc2 +

(
p− A

c

)2

2m
+A0(x)−

S · (
[
v/c−A/(mc2)

]
×E)

2mc
− B ·S

m
. (3.2)

2In particular ψ6 is not dynamical and can be integrated out, while ψ5 can be eliminated by imposing this constraint.
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In the adiabatic limit, transitions between spin states are suppressed and correspondingly the real
part of the world line effective action can be written as

WR =
∫

DxD p exp
(

i
∫

dt
[
ẋ ·p− H̃

])
, (3.3)

with H̃ = mc2 + (p−A/c)2

2m +A0(x)− ṗ ·A (p). The path integral in this limit contains a Berry phase
A (p) ≡ −i〈ψ+(p)|∇p|ψ+(p)〉. We contrast our results to that of [23, 24], where the topology of
the chiral anomaly was identified with a Berry phase. Our derivation suggests a different interpre-
tation: Here, the anomaly is tied to the emergence of fermionic zero modes and to the imaginary
part of the effective action, while a Berry phase is found for the real part – indicating that anomaly
and Berry phase are not related. Our findings thus agree with observations made by Fujikawa in
other context [40, 41].

4. Elements of Chiral Kinetic Theory

Starting from the saddle-point limit of the Schwinger-Keldysh world-line path integral, one
obtains a classical phase space formulation, where spin is expressed by anti-commuting Grassmann
coordinates. Here the central object is a Liouville equation,

0 = { f ,H}= f
( ←−

∂

∂xµ
ẋµ +

←−
∂

∂Pµ
Ṗµ +

←−
∂

∂ψµ
ψ̇

µ +

←−
∂

∂ψ5
ψ̇5

)
, (4.1)

where the fundamental Poisson brackets are given by {xµ , pν}= δ
µ

ν , {ψµ ,ψν}=−iδ µ

ν , {ψ5,ψ5}=
−i and {ψµ ,ψ5}= 0. The world-line Hamiltonian in the massive case is given by

H =
ε

2
(
P2 +m2 + iψµFµνψ

ν
)
+

i
2
(
Pµψ

µ +mψ5
)

χ , (4.2)

and in the chiral case by

H =
ε

2
(
P2 + iψµFµνψ

ν
)
+

i
2

(
Pµψ

µ ± i
3

ε
µναβ Pµψνψαψβ

)
χ . (4.3)

Here, Pµ ≡ pµ −Aµ . For a specific gauge choice, χ = 0 and ε = 1/P0, the following equations of
motion follow

Ṗµ = vαFµα − i
2P0 ψ

α
∂

µFαβ ψ
β , (4.4)

ẋµ = vµ , (4.5)

ψ̇
µ =

1
P0 Fµα

ψα , (4.6)

where vµ = εPµ and ψ̇5 = 0 is not dynamical. The classical equations of motion for both massive
and chiral case coincide. However, the equations are supplemented by spectral constraints which
distinguish the two cases,

P2 +m2 = 0 , Pµψ
µ +mψ5 = 0 (massive case) , (4.7)

P2 = 0 , Pµψ
µ ± i

3
ε

µναβ Pµψνψαψβ = 0 (chiral case) . (4.8)
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In order to derive a Boltzmann transport equation, we follow a stochastic approach whereby the
microscopic Liouville density f is written in terms of the one-particle Boltzmann distribution
function, f ≡ 〈 f 〉+ δ f = f̄ + δ f . The expectation value denotes an average wrt. a statistical
ensemble specified by at some initial time through the initial density matrix in the Schwinger-
Keldysh path integral. Likewise, we can split the gauge sector into average and fluctuating fields,
Aµ ≡ 〈Aµ〉+ δAµ = Āµ + δAµ and in turn split the Liouville equation. We obtain a Boltzmann
equation,

f̄
( ←−

∂

∂xµ

[
εPµ

]
+

←−
∂

∂Pµ

[
εF̄µαPα −

iε
2

ψ
α

∂
µ F̄αβ ψ

β

]
+

←−
∂

∂ψµ

[
εF̄µα

ψα

])
=C[δ f ,δF ] , (4.9)

where the collision term is given by

C[δ f ,δF ]≡−ε〈δ f
←−
∂

∂Pµ
δFµα〉Pα − ε〈δ f

←−
∂

∂ψµ
δFµα〉ψα +

iε
2
〈δ f

←−
∂

∂Pµ
∂

µ
δFαβ 〉ψα

ψ
β .

(4.10)

Similarly, the equation for the fluctuations reads

δ f
( ←−

∂

∂xµ

[
εPµ

]
+

←−
∂

∂Pµ

[
εF̄µαPα −

iε
2

ψ
α

∂
µ F̄αβ ψ

β

]
+

←−
∂

∂ψµ

[
εF̄µα

ψα

])
= K[δF ] , (4.11)

where

K[δF ]≡− f̄
( ←−

∂

∂Pµ

[
εδFµαPα −

iε
2

ψ
α

∂
µ

δFαβ ψ
β

]
+

←−
∂

∂ψµ

[
εδFµα

ψα

])
. (4.12)

These equations form the starting point for a derivation of chiral kinematic theory. In practice
Eq.(4.9) and Eq.(4.11) form an infinite hierarchy of equations for the one-particle distribution
function as well as higher moments of the fluctuations 〈δ f δ f 〉, 〈δ f δ f δ f 〉, . . . . One must trun-
cate these equations using a power counting scheme, in order to integrate out the fluctuations in
closed form. Furthermore, the effects of the anomaly are contained in the SK path integral. Here,
one must compute current expectation values inside the path integral before taking the saddle point
limit [31, 32].

5. Summary

We presented a world-line approach to constructing an effective kinetic theory for relativistic
fermions, via a heat-kernel regularization in Quantum Field Theory. In this approach the emergence
of the chiral anomaly is related to the imaginary part of the fermionic effective action. A many-body
generalization of the approach, via a Schwinger-Keldysh non-equilibrium path integral, allows to
derive a semi-classical Liouville equation for phase space trajectories, generalized to include spin
via Grassmann coordinates. Future application of the worldline approach may include the dynamics
of topological transitions in non-Abelian plasmas, thereby treating the color group SU(N) too using
Grassman variables, or computing the structure of nuclei at high energies.
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