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Majorons as cold light dark matter
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Majorons are the Goldstone bosons of spontaneously broken lepton number and hence intimately
connected to Majorana neutrino masses. Since all majoron couplings are heavily suppressed by
the seesaw scale they are interesting candidates for long-lived dark matter. The signature decay
into two mono-energetic neutrinos is potentially detectable with neutrino detectors for majoron
masses above MeV and complementary to the loop-induced decays into visible particles. The
mass range between keV and MeV can only be probed indirectly with the majoron decay into
two photons; keV-scale majorons can be warm or cold dark matter depending on the underlying
freeze-in mechanism.
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1. Introduction

The accidental global lepton-number symmetry U(1)L could be broken spontaneously rather
than explicitly in the seesaw mechanism of Majorana neutrino masses, in which case one predicts
a massless Goldstone boson J with couplings suppressed by the U(1)L breaking scale f [1, 2].
Assuming the full Lagrangian (including gravity) contains some small explicit U(1)L-breaking
terms, this majoron J becomes a pseudo-Goldstone boson with mass mJ , taken as a free parameter
in the following. As realized already long ago [3, 4], the heavily suppressed couplings ∝ 1/ f make
the majoron potentially long-lived enough to act as dark matter (DM), with signature tree-level
decay channel J→ νν and loop-level decay channels into visible particles. The signatures of this
DM candidate depend on whether mJ is below or above MeV, as discussed in the following.

2. Majoron with mass above MeV

Assuming the correct DM density to be produced via a freeze-in mechanism [5], we can dis-
cuss the signatures of unstable majoron DM with mass above MeV [6, 7, 8]. The most conservative
constraint on Γ(J→ νν) comes from cosmology and requires the DM lifetime to be O(10) times
the age of our Universe [9, 10, 11]. However, for DM masses above ∼ 4 MeV one can actually
search for the mono-energetic neutrinos with neutrino detectors such as Borexino, KamLAND,
and Super-Kamiokande, which can give far better constraints and warrant dedicated experimental
analyses [12, 6]. With upcoming experiments such as Hyper-Kamiokande, JUNO, and DUNE,
prospects for improvement in this direction are very good and could make it possible to detect
majoron DM via the smoking gun neutrino lines.

Since neutrinos are part of an SU(2)L doublet, it is ill-advised to discuss neutrino couplings
and not charged leptons. In the simplest majoron model, the J couplings to charged leptons and
quarks arise at the one-loop level [1, 13], while that to photons at two-loop [6]. The corresponding
decays J → ``′,qq,γγ are strongly constrained by their impact on the cosmic microwave back-
ground [14] as well as by γ-ray telescopes such as Fermi-LAT. Interestingly, these visible decay
channels depend on different model parameters than the tree-level majoron decay into neutrinos,
making it impossible to compare these constraints [6]. In other words, the neutrino channel is
complementary to the usual visible indirect-detection signatures and could in fact be the discovery
channel of majoron DM!

3. Majoron with mass below MeV

For sub-MeV majoron masses, only the decay J→ γγ remains as a promising indirect detection
signature [4, 15, 16], seeing as J→ νν would give neutrinos of too-low energy to induce inverse
beta decay, thus making line-searches challenging. For DM masses below O(10) keV one can have
an additional effect on structure formation because DM could be warm [17]. This is precisely
the region of interest for the tantalizing line at Eγ ' 3.55 keV observed in Refs. [18, 19], which
would hint at a 7 keV majoron. The significance and origin of this line are rather controversial, see
e.g. Refs. [20, 21], but it still serves as a good benchmark value.

For such keV-scale DM masses one has to be careful not to violate structure-formation con-
straints from the Lyman-α forest, which effectively put limits on the DM free-streaming length.
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This depends on the DM production mechanism and is thus model dependent, with many models
being incompatible with a 7 keV DM mass [22]. As shown in Ref. [23], there however exist pro-
duction mechanisms that can produce keV DM in a very cold way, thus allowing to accommodate
γ-lines down to keV without affecting structure formation. These mechanisms are necessarily of
the freeze-in type and require a calculation of the DM momentum distribution in order to assess the
mean DM momentum, which is the appropriate quantity that governs the DM warmness [23, 24].
As one simple example for such a mechanism let us consider the DM production via the decay
A→ BDM, where A and B are heavy particles in thermal equilibrium and the DM candidate is
much lighter than mA−mB. In the A rest frame it is obvious that the DM momentum becomes
smaller the more degenerate A and B are, simply due to phase-space suppression. It turns out that
this feature survives in the thermal bath, leading to a mean DM momentum 〈p/T 〉 ' 5

2 (1−m2
B/m2

A)

at the time of DM production. Even a mild degeneracy of A and B can thus suppress 〈p/T 〉 far be-
low the typical O(3) values given by other mechanisms. This implies a very short free-streaming
length which evades any structure-formation constraints even for keV DM mass, while still allow-
ing for J→ γγ signatures. The required setup, a light DM particle with off-diagonal coupling to
two quasi-degenerate heavy particles, can naturally be found in inverse-seesaw majoron models,
discussed in detail in Ref. [24], where A and B form a sterile neutrino pseudo-Dirac pair.

4. Conclusion

Majorons make for interesting unstable DM candidates, intimately linked to the Majorana neu-
trino mass generation. The signature majoron decay into mono-energetic neutrinos is potentially
detectable for energies above MeV and motivates dedicated searches with neutrino detectors, which
are nicely complementary to searches for gamma-ray lines etc. The parameter space below MeV
offers fewer testable channels, but is still constrained by x-ray lines and structure formation, e.g. in
the form of Lyman-α forest data. These two signatures can be decoupled depending on the DM
production mechanism, making it in particular possible to have cold keV DM, naturally occurring
in majoronic inverse seesaw mechanisms.
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