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Gravitational waves (GWs) are one of the key predictions of Einstein’s theory of general relativity
(GR). Scientists have been looking for evidence of GWs since their prediction by Einstein in 1916.
The first direct detection was achieved by LIGO in 2015, 100 years after their prediction, from
merging of two black holes in a binary into one. According to GR gravitational waves have two
independent polarization states. In this paper, we study the power radiated and the strain of GW
along the two polarization states from a compact binary system with its general orbital properties.
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1. Introduction

Gravitational waves are one of the key predictions of Einstein’s theory of general relativity
(hereafter GR) [1, 2]. In GR, accelerated massive bodies generate ripples in spacetime. These rip-
ples radiate away from their source at the speed of light [3]. The same way the electromagnetic
radiation carry information about their origin, GWs also carry information about their origin. The
first indirect evidence of the existence of GW was a binary system discovered by Hulse and Taylor,
known as PSR 1913+16 [4]. They observed that the orbital period of this system was decaying.
This decay was consistent with the expected orbital decay of a system emitting gravitational radia-
tion as predicted by the standard quadrupole formula in GR [5].

It was not until 2015 when the first direct detection of GWs (GW150914) was achieved by
LIGO. This event was due to inspiraling orbit and merger of two black holes [6]. Since the
GW150914 event, there have been 5 more confirmed detections made by LIGO and VIRGO namely
GW151226, GW170104, GW170608, GW170814 and GW170817 [6–11]. With these detections,
scientists have been able to probe some fundamental physics in the highly dynamical and strong-
field regime of gravity, as predicted by the GR using GW signals. One of the key tools used to
study GWs is the polarization states of these waves. In general, alternative theories of gravity pre-
dict up to six polarization states, namely plus, cross, breathing, longitudinal, vector-x and vector-y,
assuming that the GW is propagating in the z direction [12]. However in GR, only two states of
polarizations are allowed, the plus and the cross modes. In this paper, only these two independent
polarizations from GR will be discussed.

This paper starts with an introduction to the theory of GW generation and propagation in
spacetime. Then review the polarization states of GW as described by GR and finally study the
GW power generated and strain of this wave in spacetime for two compact objects spiraling in an
orbit with general configuration.

2. GW Theory

In the theory of general relativity, the Einstein’s field equations are given by,

Rµν −
1
2

gµνR =−8πGTµν (2.1)

We solve equation (2.1) by assuming the spacetime far away from the source to be a Minkowski
spacetime ηµν (flat). Let the GW passing through the observer be represented by the perturbation
hµν on a background spacetime ηµν . The spacetime metric gµν in (2.1) becomes gµν = ηµν +

hµν . Expanding (2.1) in powers of hµν and their derivatives (∂µhµν ) under the harmonic gauge
condition, we obtain the following wave equation [3].

�h̄µν =−16πGTµν (2.2)

where h̄µν = hµν − 1
2 ηµνh, is “the trace-reversed tensor” of hµν
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In vacuum, where there is no matter present we have Tµν = 0, and we have

�h̄µν = 0 (2.3)

The above equation has a plane wave solution,

h̄µν = hµν = aeµν cos(ωt−k·x)

Here eµν is the polarization unit tensor, a is the GW amplitude, ω is the orbital angular frequency,
k is the wave vector, and x is the position. Solving equation (2.3) with the above plane wave we
find that there are only two independent components of eµν , namely plus (e+) and cross (e×).

Equation (2.2) can be evaluated to find the power radiated by a system of masses undergoing
arbitrary motion. Using quadrupole approximation, the power radiated into the solid angle dΩ

with polarization ei j is [13],

dE
dtdΩ

=
G

8πc5

(d3Qi j

dt3 ei j

)2
(2.4)

where Qi j is the quadrupole moment tensor given by

Qi j = ∑
α

mαimα j (2.5)

and α = 1,2

3. GW Polarization

Consider a GW with orthonormal coordinates constructed by three unit vectors k̂, ŵθ and ŵφ . Let
k̂ be the direction of propagation of the GW such that unit vectors ŵθ and ŵφ are orthogonal to the
propagation of this GW. In this coordinate system, the two polarization modes are defined as,

e+ = ŵθ ⊗ ŵθ − ŵφ ⊗ ŵφ (3.1)

e× = ŵθ ⊗ ŵφ + ŵφ ⊗ ŵθ (3.2)

and are represented graphically in Figure 1.

Figure 1: The effect of the plus and cross polarizations on a ring of particles in space.
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If we consider an observer at a distance R from the source with coordinates x̂=(1,0,0), ŷ=(0,1,0)
and ẑ = (0,0,1). Then the coordinate systems of the wave and observer are related by,

ŵθ = x̂cosθ cosφ + ŷcosθ sinφ − ẑsinθ

ŵφ =−x̂sinφ + ŷcosφ

k̂ = x̂sinθ cosφ + ŷsinθ sinφ + ẑcosθ

where θ and φ are the conventional polar coordinates, as shown in Figure 2.

3.1 Power

We now consider a binary system of masses m1 and m2 in a closed orbit around a common center
of mass with eccentricity e and semi-major axis a and the observer is located as described above
and in Figure 2. The total power radiated into the cone dΩ is given by equation (2.4).

Figure 2: Binary system consisting of two masses m1 and m2 orbiting around a common center of gravity
with semimajor axis a and the orbital angular frequency ω .

Powers radiated into the two polarization components are given by [14],

dP+
dΩ

=
G4

πc5
m2

1m2
2(m1 +m2)

a5(1− e2)7/2

[(1
2
+

99
64

e2 +
51
256

e4
)
(1+ cos4

θ)+
(

1+
95
32

e2 +
47

128
e4
)

cos2
θ

+
(13

32
e2 +

1
16

e4
)
(1− cos4

θ)cos2φ − 25
512

e4(1+ cos2
θ)2 cos4φ

]
(3.3)

dP×
dΩ

=
G4

πc5
m2

1m2
2(m1 +m2)

a5(1− e2)7/2

[(
2+

97
16

e2 +
49
64

e4
)

cos2
θ +

25
128

e4 cos2
θ cos4φ

]
(3.4)

Assuming that the emission of GW is symmetric over φ we can integrate equation (3.3) and (3.4)
over φ(0,2π) to get power radiated as a function of the inclination angle θ(0,π) , eccentricity
e(0,1) , masses (m1 and m2), and semi-major axis a,

P+ =
G4

πc5
m2

1m2
2(m1 +m2)

a5(1− e2)7/2

[(1
2
+

99
64

e2 +
51
256

e4
)
(cosθ +

1
5

cos5
θ)+

1
3

(
1+

95
32

e2 +
47

128
e4
)

cos3
θ

]
(3.5)

P× =
G4

πc5
m2

1m2
2(m1 +m2)

3a5(1− e2)7/2

[(
2+

97
16

e2 +
49
64

e4
)

cos3
θ

]
(3.6)

3



P
o
S
(
H
E
A
S
A
2
0
1
8
)
0
2
9

GW Polarizations L. Nyadzani

In Figure 3 we plot these powers as different functions of parameters.

Figure 3: Power radiated into plus (+) (red dashed line) and cross (×) (blue solid line) shows polarization
components. Top left panel shows power as a function of the inclination angle (0,π); top right panel shows
power radiated as a function of the eccentricity (e); bottom left panel shows power as a function of the mass
and bottom right panel shows power as a function of the semi-major axis (a).

3.2 GW Strain

If one solves the Einstein’s field equation by assuming a small spacetime perturbation (hµν ) on a
flat spacetime background (ηµν ) at a distance r from the source, one obtains that, the disturbance
in space is given by the following formula [3],

hi j =
1
r

Q̈i j (3.7)

where r is the distance form the source to the observer and Qi j is the quadrupole moment. The
polarization tensor ei j has only two independent components, the plus and cross polarization, and
the strains for these components are defined as

h+ = hi j× e+

h× = hi j× e× (3.8)
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Calculating Qi j for a system described in Figure 2 using equation (2.5) and differentiate twice with
respect to time, as required by equation (3.7), we obtain the following,

Q̈i j =

 ecos3 ψ−2sin2
ψ +1 (ecos2 ψ + e+2cosψ)sinψ 0

(ecos2 ψ + e+2cosψ)sinψ −(e2 + ecos3 ψ + cosψ−2sin2
ψ +1) 0

0 0 0


where ψ is the retarded position of the system. Having obtained Q̈i j we substitute (3.7) into (3.8)
to obtain the following,

h+ =
2G2m1m2

ac4r(e2−1)

(
− (sin2

φ cos2
θ − cos2

φ)(e2 + ecos3
ψ + ecosψ−2sin2

ψ +1)

− (sin2
φ − cos2

φ cos2
θ)(ecos3

ψ−2sin2
ψ +1)

+2(cos2
θ +1)(ecos2

ψ + e+2cosψ)sinφ sinψ cosφ

)
(3.9)

h× =− 2G2m1m2

ac4r (e2−1)

(
e2 sin(2φ)+

e
2

sin(2φ −3ψ)+
5e
2

sin(2φ −ψ)+2sin(2φ −2ψ)

)
cosθ

(3.10)

Equations (3.9) and (3.10) show the relationship between GW strain and the four parameters
namely, mass, distance traveled, eccentricity, inclination angle, semimajor axis and the retarded
position. These are general equations for arbitrary orbital parameters.

From here on we will study circular systems by letting e = 0 in equation (3.9) and (3.10) which
give,

h+ =−2G2m1m2

rac4 (1+ cos2
θ)cos(2ψ−2φ) (3.11)

h× =−4G2m1m2

rac4 cosθ sin(2ψ−2φ) (3.12)

It is better to write (3.11) and (3.12) in terms of orbital frequency ω , and the semimajor axis is
related to the orbital period by Kepler’s law of orbits. Kepler’s law of orbits

T =
2π

ω
= 2π

√
a3

G(m1 +m2)

Then

a =
G1/3(m1 +m2)

1/3

ω2/3 (3.13)

Substituting (3.13) in (3.11) and (3.12) we obtain the following,

h+ =−2G5/3m1m2ω2/3

rc4(m1 +m2)1/3 (1+ cos2
θ)cos(2ψ−2φ) (3.14)

h× =−4G5/3m1m2ω2/3

rc4(m1 +m2)1/3 cosθ sin(2ψ−2φ) (3.15)
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Equations (3.14) and (3.15) are valid for objects moving with very small speed compared to the
speed of light. The semimajor axis decreases slowly, and the orbital frequency can be taken to be
constant over a long period of time. The orbital angular frequency is given by, ω = dψ/dt, then
ψ = ωt, assuming ω to be constant with time. We define new quantities A+, A×,g+ and g× such
that h+ = A+g+ and h× = A×g×, where,

A+ =
2G5/3M 5/3ω2/3

rc4 (1+ cos2
θ) (3.16)

A× =
4G5/3M 5/3ω2/3

rc4 cosθ (3.17)

g+ = cos(2ωt−2φ) (3.18)

g× = sin(2ωt−2φ) (3.19)

Here M = (m1m2)
3/5/(m1+m2)

1/5 is the chirp mass, (A+, A×) are the amplitude of the GW along
the two polarizations, and (g+, g×) are the GW sinusoidal waveform. Equations (3.18) and (3.19)
show that the GW frequency is twice that of the orbital frequency and the GW amplitude falls off as
1/r from equations (3.16) and (3.17). Thus, the effect of GW on spacetime decreases as the wave
propagate away from the source. When the angle of inclination θ is zero or multiples of π the plus
and the cross amplitudes are equal. If the observer is a detector such as the LIGO and VIRGO,
the orbital frequency can be determined from their data and the chirp mass can be calculated using
relation [15],

M =
( 5

96π8/3 f 11/3 ∂t f
)3/5

Once the polarization modes are separated such that the inclination angle can be constrained, equa-
tions (3.16) and (3.17) can be used to constrain the distance to the source. For a system with
m1 = 2M�,m2 = 1.5M�, f = 10−5Hz and 100kLy from the earth (size of our galaxy), (3.16) and
(3.17) give the amplitude to be 3.35× 10−24 for both A+ and A× with the inclination (θ = π). If
the inclination angle is not a multiple of π the two amplitudes are not equal. For example for a
system described above with θ = 0.4π A+ is twice A× and when the inclination θ is π/2 the A×
vanishes and only A+ remains.

4. Summary

In this paper we have calculated how the power radiated by a binary system in the form of GW
into the plus and cross polarizations is dependent on the masses, eccentricity, semi-major axis and
the angle of inclination with respect to the observer. Studying GW polarization states is important
in determining properties of the systems that generate them, such as, the inclination angle relative
to the observer. Figure 2 shows that, power radiated into the plus polarization is more than that
radiated into the cross polarization for θ 6= π/2. The GW strain hold information about the origin
of the wave, such as the inclination angle, mass, orbital frequency and the distance traveled. If the
amplitude of the wave is determined from the detectors such as LIGO, it can be used to determine
some of the system properties using equations (3.16) and (3.17).
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