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PROSPECT, the Precision Reactor Oscillation and Spectrum, is a short-baseline reactor antineu-
trino experiment. PROSPECT consists of a segmented 4-ton 6Li liquid scintillator antineutrino
detector that will precisely measure the 235U fission antineutrino spectrum from the High-Flux
Isotope Reactor at Oak Ridge National Laboratory. PROSPECT’s high statistics and high reso-
lution measurements of the antineutrino energy spectrum and flux from HFIR’s 235U core will
be vital to understanding the discrepancies between predicted and measured antineutrino spec-
tra and fluxes observed in previous commercial power reactor neutrino experiments; in addi-
tion, PROSPECT will search for the existence of sterile neutrino oscillations at the eV2-scale.
PROSPECT’s assembly was completed in late 2017 and physics data taking at HFIR began in
2018. This talk explains PROSPECT’s physics objectives, describe its experimental design, and
cover its installation and initial data-taking.
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1. Introduction

Reactor antineutrino experiments shed light in the discovery of neutrino [1] and precise mea-
surements of neutrino mixing angle θ13 [2, 3, 4]. The short baseline flux measurements of νe from
commercial fission reactors found ∼ 6% discrepancy from the theoretical based prediction[5, 6],
which often referred as Reactor Antineutrino Anomaly[7] (RAA). Those experiments revealed a νe

prompt energy spectrum distortion indicating 8-10% excess at 4-6 MeV compared with the nuclear
models. These results suggested reexaminations of fission branches that contributed to the antineu-
trino flux and spectrum anomaly. The flux deficit hinted a ∆m2∼ eV2 sterile neutrino oscillation[8].
The community has an urgent need of testing the possible sterile neutrino oscillation, as well as
precise inputs of νe flux and spectra from the major branches of fission reactors.

2. Experiment Design

PROSPECT, the Precision Reactor Oscillation and SPECTrum experiment, started taking data
from the first quarter of 2018 to measure the baseline dependent νe spectrum in 7-9 m from a
Highly Enriched 235U (HEU) reactor, the High Flux Isotopic Reactor (HFIR) at Oak Ridge National
Laboratory (ORNL) (see, e.g., Figure 1). The goals of this experiment are to test the possible
sterile neutrino oscillation and investigate the isotopic contribution to the spectrum distortion by
measuring the absolute νe spectrum from 235U.
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Figure 1: The layout of
the PROSPECT experiment,
where detector (green) is ap-
proximately 7-9 m from the
reactor core (red)[9].
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Figure 2: A view of the AD showing
the shielding layers, the optical seg-
mentation and PMTs with protective
housings[9].
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Figure 3: The individual segment of
AD. (Top left) The end of the PMT
housing; (Top middle) The cross sec-
tion of the segment; (Top right) The
front face of PMT housing.

The HFIR is an 85 MW compact cylindrical core, from which > 99% of νe are generated
from 235U, with reactor cycle of ∼24 days per cycle. The PROSPECT Antineutrino Detector (AD)
is an optically segmented Liquid Scintillator (LS), which contains ∼ 4 tons of 6Li loaded EJ-309
(see, e.g., Figure 2). To precisely measure event energy and position, the LS was uniformly divided
into 14× 11 meter-long longitudinal segments. Each segment was enclosed by 4 reflective and
low mass separators and two 5" Photomultiplier Tubes (PMTs) with one PMT on each end. The
scintillation light is constrained in a small number of segments, and the vertex position along each
segment is reconstructed based on differences of timing and light integral between the two PMTs.
The separators were interlocked by the hollow supporting rods showed in Figure 3, which allows
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the calibration sources to be inserted into the detector. The shielding of PROSPECT AD consists of
water bricks on top, polyethylene, lead and borated polyethylene containing the detector in layers,
to minimize the reactor correlated and cosmogenic backgrounds.

The PROSPECT AD detects Inverse Beta Decay (IBD), νe + p→ e++ n. The e+ signal is
defined as the prompt signal, whose energy is dependent on the incident νe energy. The IBD
neutrons are mostly captured by 6Li 40-50 µs after the prompt signal. The delayed n-Li signal,
which emits an α particle and a 3T, can be tagged by pulse shape discrimination. Besides, we
enhanced the signal to background ratio with the event selections: 1) cosmic ray and fast neutron
veto time; 2) prompt-delay timing and topological proximation; 3) fiducial volume of detector that
excludes the outermost layer of segments.

3. Detector Calibration

We inserted optical LED pulses, radioactive sources and used the ambient data to calibrate the
detector’s response. The 795±15 PE/MeV photon statistics of the LS, which dominates the energy
resolution, was characterized by the optical calibration. With the 137Cs source deployed throughout
the detector, we found the relative energy scale uniformity within ∼ 1% among detector segments.
The energy scale (energy resolution) varied within∼ 1% (∼ 10%) during the unblinded data period.
The resolution of position reconstruction along the segment axial direction was ∼ 5 cm[10].

4. Searching for Sterile Neutrino

From 0.8 to 7.2 MeV of reconstructed prompt energy, we collected 56378 IBD candidates
during 33 reactor-on days and 28 reactor-off days. The amount of IBD events after correlated and
accidental background subtraction was 25461±283, indicating 2.20 (1.32) correlated (accidental)
signal to background ratio.

To test the sterile neutrino oscillation independently from nuclear models, the fiducial AD
segments were divided into 6 groups with respect to their baselines. The spectrum of prompt IBD
energy was measured by the fiducial detector and individually by each of the segment groups. The
comparison between the spectrum from each group and the summed spectrum is shown in Figure
4. The χ2 test between the baseline dependent spectra and the full-detector-measured absolute
spectrum was evaluated through a combined covariance matrix of statistical and systematic un-
certainties. The exclusion curve showed in Figure 5, which was based on Feldman-Cousins[11]
confidence interval. As a result, we disfavored the RAA best fit model at 2.2σ .

5. Conclusions

PROSPECT is a reactor antineutrino experiment built to test the possible ∆m2 ∼ eV 2 sterile
neutrino oscillation and precisely measure νe spectrum from 235U. We characterized the stability of
event and uncertainties of the energy and position reconstruction at an early stage. The PROSPECT
AD observed reactor antineutrinos in the first 2 hr of data and collected 25461± 283 reactor cor-
related νe events in 33 reactor-on days. The model-independent oscillation analysis disfavored the
RAA’s for best fit sterile neutrino oscillation with 2.2σ confidence level.
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FIG. 4. Ratio of measured IBD prompt Erec,p spectra in six base-
line bins from 6.7 to 9.2 m to the baseline-integrated spectrum.
Also shown are the no-oscillation (flat) expectation and an oscillated
expectation corresponding to the the best fit Reactor Antineutrino
Anomaly oscillation parameters [12]. Error bars indicate statistical
and systematic uncertainties, with statistical correlations between nu-
merator and denominator properly taken into account.
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FIG. 5. Sensitivity and 95 % confidence level sterile neutrino oscil-
lation exclusion contour from the 33 live-day PROSPECT reactor-on
dataset. The best fit of the Reactor Antineutrino Anomaly [12] is
disfavored at 2.2� confidence level.

of oscillated toy datasets generated at that grid point [41]. The
present dataset excludes significant portions of the Reactor
Antineutrino Anomaly allowed region [12], and disfavors its
best fit point at 2.2� confidence level (p-value 0.013). The
present sensitivity is limited by statistics. Shown along with
the data exclusion contour is the expected PROSPECT 95 %
confidence level sensitivity curve for this dataset. This re-
sult was further cross checked with an independent oscillation
analysis using the Gaussian CLs method [42].

In summary, the PROSPECT experiment has observed in-

teractions of 25461 reactor ⌫e produced by 235U fission in
33 live-days of reactor-on running. The current signal se-
lection provides a ratio of 1.32 ⌫e detections to cosmogenic
backgrounds, as well as the capability to identify reactor-
on/off state transitions to 5� statistical confidence level within
2 hours. These demonstrate the feasibility of on-surface reac-
tor ⌫e detection and the potential utility of this technology for
reactor power monitoring. A comparison of measured IBD
prompt energy spectra between detector baselines with the 33
live-day dataset provides no indication of sterile neutrino os-
cillations. This disfavors the Reactor Antineutrino Anomaly
best fit point at 2.2� confidence level and constrains signif-
icant portions of the previously allowed parameter space at
95 % confidence level.
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Figure 4: The ratio of the IBD spectra measured
in six baselines to the summed energy spec-
tra, where the purple dashed line indicates no-
oscillation scenario and green dashed line high-
lights RAA best fit model [10].
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FIG. 4. Ratio of measured IBD prompt Erec,p spectra in six base-
line bins from 6.7 to 9.2 m to the baseline-integrated spectrum.
Also shown are the no-oscillation (flat) expectation and an oscillated
expectation corresponding to the the best fit Reactor Antineutrino
Anomaly oscillation parameters [12]. Error bars indicate statistical
and systematic uncertainties, with statistical correlations between nu-
merator and denominator properly taken into account.
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FIG. 5. Sensitivity and 95 % confidence level sterile neutrino oscil-
lation exclusion contour from the 33 live-day PROSPECT reactor-on
dataset. The best fit of the Reactor Antineutrino Anomaly [12] is
disfavored at 2.2� confidence level.

of oscillated toy datasets generated at that grid point [41]. The
present dataset excludes significant portions of the Reactor
Antineutrino Anomaly allowed region [12], and disfavors its
best fit point at 2.2� confidence level (p-value 0.013). The
present sensitivity is limited by statistics. Shown along with
the data exclusion contour is the expected PROSPECT 95 %
confidence level sensitivity curve for this dataset. This re-
sult was further cross checked with an independent oscillation
analysis using the Gaussian CLs method [42].

In summary, the PROSPECT experiment has observed in-

teractions of 25461 reactor ⌫e produced by 235U fission in
33 live-days of reactor-on running. The current signal se-
lection provides a ratio of 1.32 ⌫e detections to cosmogenic
backgrounds, as well as the capability to identify reactor-
on/off state transitions to 5� statistical confidence level within
2 hours. These demonstrate the feasibility of on-surface reac-
tor ⌫e detection and the potential utility of this technology for
reactor power monitoring. A comparison of measured IBD
prompt energy spectra between detector baselines with the 33
live-day dataset provides no indication of sterile neutrino os-
cillations. This disfavors the Reactor Antineutrino Anomaly
best fit point at 2.2� confidence level and constrains signif-
icant portions of the previously allowed parameter space at
95 % confidence level.
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Figure 5: The sensitivity to sterile neutrino
oscillation and exclusion curve with 95% con-
fidence level, disfavoring the RAA best fit at
2.2σ [10].
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