

Production of open charm and beauty states in p-Pb collisions with LHCb

Benjamin Audurier for the LHCb collaboration*†

Università degli study di Cagliari E-mail: benjamin.audurier@ca.infn.it

A rich set of open heavy flavour states is observed by LHCb in p-Pb and Pb-p collisions data collected at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV. In these proceedings, latest results obtained by the LHCb collaboration are reported, with a special focus on the data recorded in 2013 at $\sqrt{s_{NN}} = 5.02$ TeV ($L_{int} = 1.6 \ nb^{-1}$). Results include the new measurements of production of beauty hadrons through cleanly reconstructed exclusive decays, as well as the Λ_c^+ baryon on the open charm states sector, observed in p-Pb collisions for the first time by LHCb.

The 39th International Conference on High Energy Physics (ICHEP2018) 4-11 July, 2018 Seoul, Korea

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

[†]The contact author acknowledges support from the European Research Council (ERC) through the project EX-PLORINGMATTER, founded by the ERC through a ERC-Consolidator-Grant, GA 647390.

1. Physics motivation : From A-A to p-A collisions

Heavy-quarks (i.e charm and beauty) are well known probes to study the deconfined state of hadronic matter, namely the Quark-Gluon Plasma (QGP), presumably formed in high-energy nucleus-nucleus collisions. With their relatively high-mass compared to Λ_{QCD} , heavy-quarks (HQs) are mostly produced at the early stage of the collision and experience the full evolution of the fireball.

However, one must take good care to disentangle QGP-related processes affecting heavy-quarks from the ones due to a confined nuclear medium. Those effects, often referred in the literature as cold nuclear matter (CNM) effects, are extensively studied in proton-nucleus collisions. A non exhaustive list includes parton energy loss mechanism [1, 2], interaction with the co-moving hadrons [3], saturation effect [4], and the influence of the nuclear parton distribution functions (nPDFs) in the target [5]. One observable to quantify them is the ratio of the HQs cross-section in p-A collisions divided by the one in pp collisions scaled by the number of nucleons in the target, the so-called nuclear modification factor $R_{pA} = \frac{\sigma_{pA}}{A \cdot \sigma_{pp}}$. Any deviation from unity of this ratio would indicate an enhancement (higher than one) or a suppression (lower than one) compare to the pp scenario.

Originally designed to study particles containing *b* or *c* quarks, the LHCb detector [6] is a fully equipped single-arm spectrometer covering a range in pseudorapidity $2 < \eta < 5$. This acceptance, coupled to the high collision energy in the center-of-mass, grants access to the low Bjorken-x regime of the CNM effects depending on the probe studied. On top of it, the high precision on the vertex resolution [7] allows to disentangle prompt (direct) and non-prompt (from b-hadrons decay) hadron productions, both in p-Pb (forward rapidity y > 0) and Pb-p (backward rapidity y < 0)

LHCb prompt D

LHCb prompt J/ψ

HELAC-EPS09LO HELAC-EPS09NLO

HELAC-nCTEQ15

LHCb

 $\sqrt{s_{NN}} = 5 \text{ TeV}$

 $p_{m} < 10 \, {\rm GeV}/c$

2. Results : Charm and beauty production

2

0.5

Starting on the charm sector, LHCb has measured the prompt D^0 production through its decay channel $D^0 \rightarrow K^- + \pi^+$ [8]. The rapidity dependence of the R_{pA} is shown in Fig. 1 and compared to several models. One can see a good descriptions of the data pattern by model predictions, showing an increasing suppression moving from backward to forward rapidity.

From the same recorded data, the Λ_c^+ production has been measured [9]. Among other quantities, charm baryon-to-meson ratios ($R_{\Lambda_c^+/D^0}$) have been computed. Such ratios are sensitive to the *c* quark fragmentation as nPDFs effects largely cancel. Data are compared to HELAC-Onia predictions [10][11], previously tuned to pp data and including different nPDF sets. While a good agreement is generally found between data and predictions for $R_{\Lambda_c^+/D^0}$, tensions appear at forward rapidity for $p_T > 7$ GeV/c as shown in Fig. 2.

In the same fashion, the prompt-charmonium to open-charm ratios have been extensively studied for the same recorded data [12]. Results show no relative J/ψ -to-D0 suppression, but a $\psi(2S)$ -to-D0 relative suppression is measured. This last results is to be linked to the measurements of the prompt $\psi(2S)$ -to- J/ψ relative suppression measured by LHCb at $\sqrt{s_{NN}} = 5.02$ TeV [13], which is at the present time not fully understood.

On the b-hadron productions, LHCb has measured the Υ (bb bound state) production [14] at $\sqrt{s_{NN}}$ = 5.02 TeV, the non-prompt J/ ψ production at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV [15] [16], and finally the $\psi(2S)$ production at $\sqrt{s_{NN}} = 5.02$ TeV [13]. The rapidity dependence of the $\Upsilon(1S)$ R_{pA} is well described by model predictions within large statistical uncertainties related to the small size of the recorded data. The conclusions hold for the J/ψ from-b, and thanks to a larger data sample recorded at 8.16 TeV $(L_{int} = 30 nb^{-1})$, this measurement has contributed to put strong constraints on the nPDF parametrization [17]. In addition, Fig. 3 shows the non-prompt J/ ψ and $\psi(2S)$ nuclear modification factor versus rapidity at $\sqrt{s_{NN}} = 5.02$ TeV. Due to large statistical uncertainties on the

Figure 2: $p_{\rm T}$ dependence of the baryon-to-meson ratio $R_{\Lambda_c^+/D^0}$ in the forward (top) and backward (bottom) rapidity region compared to model predictions. Bars (boxes) represent the statistical (correlated systematic) uncertainties.

 $\psi(2S)$ measurements (as for the $\Upsilon(1S)$), results for the two charmonium states are in agreement with each other. For both $\psi(2S)$ and Υ studies, statistical uncertainties are expected to be reduced in the p-Pb and Pb-p data at $\sqrt{s_{NN}} = 8.16$ TeV. The still-to-come results may help to understand the relative prompt $\psi(2S)$ -to-J/ ψ suppression.

Figure 3: Rapidity dependence of the non-prompt J/ψ and $\psi(2S)$ nuclear modification factor. The first mark on the bar represents the contribution of the statistical uncertainty to the total uncertainty.

References

- [1] Arleo, F. and Peigné, S., Phys. Rev. Lett. 109 (2012) 122301
- [2] Arleo, F. and Peigné, S. and Sami, T., Phys. Rev. D 83 (2011) 114036
- [3] E. G. Ferreiro, Phys. Lett. B 749 (2015) 98
- [4] J. L. Albacete and C. Marquet, Progress in Particle and Nuclear Physics 76 (2014) 1-42
- [5] de Florian, D. and Sassot, R., Phys. Rev. D 69 (2004)
- [6] LHCb collaboration, A. A. Alves Jr. et al., JINST 3 (2008) S08005
- [7] LHCb collaboration, International Journal of Modern Physics A, 30, 07, 1530022, 2015
- [8] LHCb collaboration, Roel Aaij et al., JHEP 1710 (2017) 090
- [9] LHCb collaboration, LHCb-CONF-2017-005, paper in preparation
- [10] H.-S. Shao, Comput. Phys. Commun. 184 (2013) 2562
- [11] H.-S. Shao, Comput. Phys. Commun. 198 (2016) 238
- [12] LHCb collaboration, R. Aaij et al., JHEP 10 (2017) 090
- [13] LHCb collaboration, R. Aaij et al., JHEP 03 (2016) 133
- [14] LHCb collaboration, R. Aaij et al., JHEP 07 (2014) 094
- [15] LHCb collaboration, R. Aaij et al., JHEP 02 (2014) 072
- [16] LHCb collaboration, R. Aaij et al., Phys. Lett. B 774 (2017) 159-178
- [17] Kusina, A. et al., Phys. Rev. Lett. 121 (2018) 052004