

Analysis of Gd(n,gamma) reaction with 155, 157 and natural Gd targets taken with JPARC-ANNRI and development of Gd(n,gamma) decay model for Gd-doped neutron/neutrino detectors

Ali Ajmi^{*,1,2}, T. Tanaka¹, K. Hagiwara¹, T. Sudo¹, M. Reen¹, P. Das¹, R. Dir¹, Y. Yamada¹, I. Ou¹, T. Mori¹, T. Kayano¹, Y. Koshio¹, M. Sakuda¹, T. Yano³, A. Kimura⁴, S. Nakamura⁴, N. Iwamoto⁴, H. Harada⁴, S. Lorenz⁵, M. Wurm⁵, W. Focillon⁶, M. Gonin⁶, G. Collazuol²

¹Okayama University, ²University of Padova and INFN, ³Kobe University, ⁴Japan Atomic Energy Agency, ⁵Johannes Gutenberg-Universität Mainz, ⁶École Polytechnique E-mail: aliajmi@okayama-u.ac.jp

The importance of a good model for the γ -ray energy spectrum from the radiative thermal neutron capture on Gadolinium (Gd) is specially increased in the present era of Gd-enhanced $\bar{\nu}_e$ -search detectors. Its an essential prerequisite for MC studies to evaluate the neutron tagging efficiency, in order to enhance signal sensitivity in the Gd-loaded $\bar{\nu}_e$ -search detectors. The γ -ray spectra produced from the thermal neutron capture on enriched gadolinium targets (¹⁵⁵Gd, ¹⁵⁷Gd and Natural Gd) in the energy range 0.11 MeV to 8.0 MeV, were measured using the ANNRI Germanium Spectrometer at MLF, J-PARC. Based on the data acquired and a GEANT4 simulation of the ANNRI detector, we reported the energy spectrum of ¹⁵⁷Gd(n, γ) and developed a γ -ray emission model of ¹⁵⁷Gd(n, γ) in our previous publication. We now present the analysed data of ¹⁵⁵Gd(n, γ), ¹⁵⁷Gd(n, γ) and ^{nat}Gd(n, γ) reactions, the energy spectra of γ -rays and an improved model for ¹⁵⁵Gd(n, γ), ¹⁵⁷Gd(n, γ) and ^{nat}Gd(n, γ) reactions. The consistency of the results from the devised model is checked among all the 14 germanium crystals, at the level of 15% spectral shape deviation at 0.2 MeV binning.

The 39th International Conference on High Energy Physics (ICHEP2018) 4-11 July, 2018 Seoul, Korea

*Speaker.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

Gadolinium (Gd) is being used in a number of neutrino experiments for enhanced detection of electron anti-neutrinos (\bar{v}_e) through neutron-tagging in the inverse beta decay reaction ($\bar{v}_e + p \rightarrow e^+ n$), as in SK-Gd [2, 3], for example. The large cross section of thermal neutron-capture on Gd (i.e. Gd(n, γ)) is due to the contributions of two of its isotopes, ¹⁵⁵Gd (254000 b) and ¹⁵⁷Gd (49000 b).

$$n + {}^{155}Gd \rightarrow {}^{156}Gd^* \rightarrow {}^{156}Gd + \gamma \operatorname{\mathbf{rays}} (8.5 \text{MeV total})$$
$$n + {}^{157}Gd \rightarrow {}^{158}Gd^* \rightarrow {}^{158}Gd + \gamma \operatorname{\mathbf{rays}} (7.9 \text{MeV total})$$

The emitted γ -spectrum and its corresponding Monte Carlo (MC) modelling for ¹⁵⁷Gd has already been discussed in [1]. However, the neutrino experiments use natural Gd (^{nat}Gd), which comprise of 14.80% of ¹⁵⁵Gd, and 15.65% of ¹⁵⁷Gd. We present the spectra from ¹⁵⁵Gd, and ^{nat}Gd, modify our "ANNRI-Gd" model with the contributions from ¹⁵⁵Gd and present our final MC for ^{nat}Gd(n, γ).

2. Experiment and data analysis

We measured the emitted γ -spectra from Gd(n, γ) with the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI spectrometer) [4, 6, 7, 5, 8] in BL04 of JPARC-MLF facility. ANNRI is located 21.5 m away from the neutron beam source, and comprise of two clusters, each with 7 germanium (Ge) crystals, 8 co-axial detectors and Bimuth Germanium Oxide (BGO) anti-coincidence shields. We report the data, which was taken in March 2013 and Dec. 2014. The two main target samples were Gd₂O₃ enriched with 91.85% ¹⁵⁵Gd, and a metal film of ^{nat}Gd with 99.9% purity. We analysed our data for neutron energies 4-100 meV. The data was grouped into samples according to the clustering algorithm described in [1]. We calibrated the detector using the sources ⁶⁰Co, ¹³⁷Cs, ¹⁵²Eu, ³⁵Cl(n, γ). We show the spectra of the most dominant sample (detected multiplicity(M)=1 and number of crystal hit(H)=1) after subtracting the corresponding background in figure 1. The background was measured with the empty target holder in the n-beam. The spectrum for ¹⁵⁷Gd is also shown for reference or reminder.

Figure 1: Single energy hit spectrum or M1H1 Spectra with Gadolinium samples, after subtracting the background, from one of the crystals. The numbers are the data statistics.

3. Modifying the ANNRI-Gd MC Model

The MC model for ¹⁵⁷Gd is already described in [1]. We now develop the same for ¹⁵⁵Gd. We identified and measured the photo peak intensities of 12 discrete γ rays for ¹⁵⁵Gd(n, γ) above 5 MeV as in table 1, and found them in agreement with the values from ENSDF [9]. The discrete peaks contribute only 2.78±0.02% of the spectrum. The rest but dominant contribution of 97.22±0.02% comes from the continuum region of the energy levels in ¹⁵⁶Gd*.

The modelling of the continuum part uses the Standard Lorentzian PSF model, i.e., it basically employs the Fermi's Golden rule. The probability(P) of transitioning from level E_a to level E_b emitting γ -ray(E_{γ}) given by "Transmission coefficient T" and "No. of levels $\rho(E_b)\Delta E_b$ "

$$P_a(E_a, E_b)\Delta E_b = \frac{T(E_a, E_b)[\rho(E_b)\Delta E_b]}{\int_0^{E_a} T(E_a, E_b)\rho(E_b)dE_b}$$

where $T(E_a, E_b)$ refers the Photon strength function (PSF) depending on cross sec.(σ_i) and width(Γ_i) of energy level(E_i)

$$T(E_{\gamma}) = 2E_{\gamma}^{3} \frac{1}{3\pi(\hbar c)^{2}} \sum_{i=1}^{2} \frac{\sigma_{i} E_{\gamma} \Gamma_{i}^{2}}{(E_{\gamma}^{2} - E_{i}^{2})^{2} + E_{\gamma}^{2} \Gamma_{i}^{2}}$$

with $E_i = (11.2, 15.2)$ MeV, $\sigma_i = (180, 242)$ mb and Width (Γ_i)= (2.6, 3.6) MeV [10, 11].

Spectral components of the discrete part are added and tuned with that of 155 Gd data. The continuum and the discrete component generated by our model shown separately here for 155 Gd, along with the data in figure 2-top. They are added in corresponding proportion to generate the final 155 Gd(n, γ) spectrum in figure 2-bottom. The data spectrum matches well with our MC spectrum.

	1st γ (MeV)	Intensity (%)
1	8.448	$0.018 {\pm} 0.002$
2	7.382	0.233±0.018
3	7.288	$0.453 {\pm} 0.026$
4	6.474	$0.352 {\pm} 0.007$
5	6.430	$0.324 {\pm} 0.027$
6	6.348	$0.303 {\pm} 0.026$
7	6.319	$0.094 {\pm} 0.005$
8	6.034	0.204 ± 0.019
9	5.885	$0.174 {\pm} 0.029$
10	5.779	$0.188 {\pm} 0.008$
11	5.698	$0.286 {\pm} 0.008$
12	5.661	$0.154{\pm}0.007$

Table 1: The relative intensities of the 12 primary discrete peaks of 155 Gd(n, γ).

Figure 2: Top: The discrete (blue) and continuum (red) component of our model for 155 Gd(n, γ) shown separately, along with the data (black). **Bottom:** Single energy hit spectrum from data (black) and our MC model (red) for 155 Gd(n, γ).

4. Results and Summary

We finally generate the spectrum for ^{nat}Gd(n, γ), by adding the same generated by our model for ¹⁵⁵Gd(n, γ) and ¹⁵⁷Gd(n, γ) in the required ratio of their relative cross-section and abundance, as shown in figure 3-left. The corresponding spectra generated by GLG4sim [12] and the GEANT4photon evaporation model [13, 14] are also shown. The spectrum generated by our "ANNRI-Gd" MC-model agrees better than most other available MC generators for Gd(n, γ). We also show the ratio of data/MC in bins of 200 keV for ¹⁵⁵Gd, ¹⁵⁷Gd, and ^{nat}Gd in figure 3-right, as an approximate representation of the goodness of our model.

Figure 3: Left: Single energy hit spectra from data (black) and our MC model (red) for ^{nat}Gd(n, γ). The corresponding spectra from GLG4sim (blue) and GEANT4 (green) are also shown. **Right:** Data/MC (our model) in bins of 200keV for ¹⁵⁵Gd(n, γ) (red), ¹⁵⁷Gd(n, γ) (green) and ^{nat}Gd(n, γ) (blue).

References

- [1] K. Hagiwara et al. arXiv:1809.02664 [nucl.ex]. .
- [2] Sekiya, Hiroyuki for the [Super-Kamiokande Collaboration]. PoS, ICHEP2016:982, 2016.
- [3] Watanabe, H. et al. [Super-Kamiokande Collaboration]. Astropart. Phys., 31(4):320–328, 2009.
- [4] M. Igashira, Y. Kiyanagi, and M. Oshima. Nucl. Instrum. Meth., A600(1):332–334, 2009.
- [5] Kimura, A. et al. J. Nucl. Sci. Technol., 49(7):708-724, 2012.
- [6] Kin, T. et al. J. Korean Phys. Soc., 59:1769–1772, 2011.
- [7] Kino, K. et al. Nucl. Instrum. Meth., A626:58-66, 2011.
- [8] Kino, K. et al. Nucl. Instrum. Meth., A736:66-74, 2014.
- [9] N. Nica. Nuclear Data Sheets for A=158. Nucl. Data Sheets, 141:1-326, 2017.
- [10] J. Kopecky, M. Uhl, and R. E. Chrien. Phys. Rev. C, 47:312–322, Jan 1993.
- [11] Japan Atomic Energy Agency. Japanese Evaluated Nuclear Data Library 4.0 (JENDL-4.0) Homepage. http://www.ndc.jaea.go.jp/jendl/j40/j40.html.
- [12] Smith, G. et al. GLG4sim, Generic liquid-scintillator anti-neutrino detector Geant4 simulation. http://neutrino.phys.ksu.edu/ GLG4sim/.
- [13] Agostinelli, S. et al. [Geant4 Collaboration]. Nucl. Instrum. Meth., A506:250–303, 2003.
- [14] J. Allison et al. Nucl. Instrum. Meth., A835:186–225, 2016.