Analysis of Gd(n,\gamma) reaction with 155, 157 and natural Gd targets taken with JPARC-ANNRI and development of Gd(n,\gamma) decay model for Gd-doped neutron/neutrino detectors

Ali Ajmi\(^\ast\), T. Tanaka\(^1\), K. Hagiwara\(^1\), T. Sudo\(^1\), M. Reen\(^1\), P. Das\(^1\), R. Dir\(^1\), Y. Yamada\(^1\), I. Ou\(^1\), T. Mori\(^1\), T. Kayano\(^1\), Y. Koshio\(^1\), M. Sakuda\(^1\), T. Yano\(^3\), A. Kimura\(^1\), S. Nakamura\(^1\), N. Iwamoto\(^1\), H. Harada\(^1\), S. Lorenz\(^5\), M. Wurm\(^5\), W. Focillon\(^6\), M. Gonin\(^6\), G. Collazuol\(^2\)

\(^1\)Okayama University, \(^2\)University of Padova and INFN, \(^3\)Kobe University, \(^4\)Japan Atomic Energy Agency, \(^5\)Johannes Gutenberg-Universität Mainz, \(^6\)École Polytechnique

E-mail: aliajmi@okayama-u.ac.jp

The importance of a good model for the \(\gamma\)-ray energy spectrum from the radiative thermal neutron capture on Gadolinium (Gd) is specially increased in the present era of Gd-enhanced \(\bar{\nu}_e\)-search detectors. Its an essential prerequisite for MC studies to evaluate the neutron tagging efficiency, in order to enhance signal sensitivity in the Gd-loaded \(\bar{\nu}_e\)-search detectors. The \(\gamma\)-ray spectra produced from the thermal neutron capture on enriched gadolinium targets (\(^{155}\)Gd, \(^{157}\)Gd and Natural Gd) in the energy range 0.11 MeV to 8.0 MeV, were measured using the ANNRI Germanium Spectrometer at MLF, J-PARC. Based on the data acquired and a GEANT4 simulation of the ANNRI detector, we reported the energy spectrum of \(^{157}\)Gd(n, \(\gamma\)) and developed a \(\gamma\)-ray emission model of \(^{157}\)Gd(n, \(\gamma\)) in our previous publication. We now present the analysed data of \(^{155}\)Gd(n, \(\gamma\)) and \(^{nat}\)Gd(n, \(\gamma\)) reactions, the energy spectra of \(\gamma\)-rays and an improved model for \(^{155}\)Gd(n, \(\gamma\)), \(^{157}\)Gd(n, \(\gamma\)) and \(^{nat}\)Gd(n, \(\gamma\)) reactions. The consistency of the results from the devised model is checked among all the 14 germanium crystals, at the level of 15% spectral shape deviation at 0.2 MeV binning.
1. Introduction

Gadolinium (Gd) is being used in a number of neutrino experiments for enhanced detection of electron anti-neutrinos ($\bar{\nu}_e$) through neutron-tagging in the inverse beta decay reaction ($\bar{\nu}_e + p \rightarrow e^+ n$), as in SK-Gd [2, 3], for example. The large cross section of thermal neutron-capture on Gd (i.e. Gd(n,\gamma)) is due to the contributions of two of its isotopes, 155Gd (254000 b) and 157Gd (49000 b).

\[
\begin{align*}
 n + ^{155}Gd & \rightarrow ^{156}Gd^* \rightarrow ^{156}Gd + \gamma \text{ rays (8.5MeV total)} \\
 n + ^{157}Gd & \rightarrow ^{158}Gd^* \rightarrow ^{158}Gd + \gamma \text{ rays (7.9MeV total)}
\end{align*}
\]

The emitted γ-spectrum and its corresponding Monte Carlo (MC) modelling for 157Gd has already been discussed in [1]. However, the neutrino experiments use natural Gd (natGd), which comprise of 14.80% of 155Gd, and 15.65% of 157Gd. We present the spectra from 155Gd, and natGd, modify our “ANNRI-Gd” model with the contributions from 155Gd and present our final MC for natGd(n, γ).

2. Experiment and data analysis

We measured the emitted γ-spectra from Gd(n, γ) with the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI spectrometer) [4, 6, 7, 5, 8] in BL04 of JPARC-MLF facility. ANNRI is located 21.5 m away from the neutron beam source, and comprise of two clusters, each with 7 germanium (Ge) crystals, 8 co-axial detectors and Bimuth Germanium Oxide (BGO) anti-coincidence shields. We report the data, which was taken in March 2013 and Dec. 2014. The two main target samples were Gd$_2$O$_3$ enriched with 91.85% 155Gd, and a metal film of natGd with 99.9% purity. We analysed our data for neutron energies 4-100 meV. The data was grouped into samples according to the clustering algorithm described in [1]. We calibrated the detector using the sources 60Co, 137Cs, 152Eu, 35Cl(n,γ). We show the spectra of the most dominant sample (detected multiplicity(M)=1 and number of crystal hit(H)=1) after subtracting the corresponding background in figure 1. The background was measured with the empty target holder in the n-beam. The spectrum for 157Gd is also shown for reference or reminder.

![Figure 1: Single energy hit spectrum or M1H1 Spectra with Gadolinium samples, after subtracting the background, from one of the crystals. The numbers are the data statistics.](image-url)
3. Modifying the ANNRI-Gd MC Model

The MC model for 157Gd is already described in [1]. We now develop the same for 155Gd. We identified and measured the photo peak intensities of 12 discrete γ rays for 155Gd(n, γ) above 5 MeV as in table 1, and found them in agreement with the values from ENSDF [9]. The discrete peaks contribute only $2.78\pm0.02\%$ of the spectrum. The rest but dominant contribution of $97.22\pm0.02\%$ comes from the continuum region of the energy levels in 156Gd*. The modelling of the continuum part uses the Standard Lorentzian PSF model, i.e., it basically employs the Fermi’s Golden rule. The probability(P) of transitioning from level E_a to level E_b emitting γ-ray(E_γ) given by “Transmission coefficient T” and “No. of levels $\rho(E_b)\Delta E_b$”

$$P_a(E_a, E_b)\Delta E_b = \frac{T(E_a, E_b)[\rho(E_b)\Delta E_b]}{\int_0^{E_a} T(E_a, E_b)\rho(E_b)dE_b}$$

where $T(E_a, E_b)$ refers the Photon strength function (PSF) depending on cross sec.(σ_i) and width(Γ_i) of energy level(E_i)

$$T(E_\gamma) = \frac{2E_\gamma^3}{3\pi(hc)^2} \sum_{i=1}^{2} \frac{\sigma_i E_i^2 \Gamma_i^2}{(E_\gamma^2 - E_i^2)^2 + E_i^2 \Gamma_i^2}$$

with $E_i=(11.2, 15.2)$ MeV, $\sigma_i=(180, 242)$ mb and Width (Γ_i)= (2.6, 3.6) MeV [10, 11].

Spectral components of the discrete part are added and tuned with that of 155Gd data. The continuum and the discrete component generated by our model shown separately here for 155Gd, along with the data in figure 2-top. They are added in corresponding proportion to generate the final 155Gd(n, γ) spectrum in figure 2-bottom. The data spectrum matches well with our MC spectrum.

<table>
<thead>
<tr>
<th>1st γ (MeV)</th>
<th>Intensity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.448</td>
</tr>
<tr>
<td>2</td>
<td>7.382</td>
</tr>
<tr>
<td>3</td>
<td>7.288</td>
</tr>
<tr>
<td>4</td>
<td>6.474</td>
</tr>
<tr>
<td>5</td>
<td>6.430</td>
</tr>
<tr>
<td>6</td>
<td>6.348</td>
</tr>
<tr>
<td>7</td>
<td>6.319</td>
</tr>
<tr>
<td>8</td>
<td>6.034</td>
</tr>
<tr>
<td>9</td>
<td>5.885</td>
</tr>
<tr>
<td>10</td>
<td>5.779</td>
</tr>
<tr>
<td>11</td>
<td>5.698</td>
</tr>
<tr>
<td>12</td>
<td>5.661</td>
</tr>
</tbody>
</table>

Table 1: The relative intensities of the 12 primary discrete peaks of 155Gd(n, γ).

Figure 2: Top: The discrete (blue) and continuum (red) component of our model for 155Gd(n, γ) shown separately, along with the data (black). Bottom: Single energy hit spectrum from data (black) and our MC model (red) for 155Gd(n, γ).
4. Results and Summary

We finally generate the spectrum for \({\text{nat}} \text{Gd(n}, \gamma) \), by adding the same generated by our model for \(^{155} \text{Gd(n}, \gamma) \) and \(^{157} \text{Gd(n}, \gamma) \) in the required ratio of their relative cross-section and abundance, as shown in figure 3-left. The corresponding spectra generated by GLG4sim [12] and the GEANT4-photon evaporation model [13, 14] are also shown. The spectrum generated by our “ANNRI-Gd” MC-model agrees better than most other available MC generators for Gd(n, \(\gamma \)). We also show the ratio of data/MC in bins of 200 keV for \(^{155} \text{Gd(n}, \gamma) \) (red), \(^{157} \text{Gd(n}, \gamma) \) (green) and \({\text{nat}} \text{Gd(n}, \gamma) \) (blue), as an approximate representation of the goodness of our model.

Figure 3: Left: Single energy hit spectra from data (black) and our MC model (red) for \({\text{nat}} \text{Gd(n}, \gamma) \). The corresponding spectra from GLG4sim (blue) and GEANT4 (green) are also shown. Right: Data/MC (our model) in bins of 200keV for \(^{155} \text{Gd(n}, \gamma) \) (red), \(^{157} \text{Gd(n}, \gamma) \) (green) and \({\text{nat}} \text{Gd(n}, \gamma) \) (blue).

References