PoS - Proceedings of Science
Volume 340 - The 39th International Conference on High Energy Physics (ICHEP2018) - Parallel: Computing and Data Handling
Fast calorimeter simulation in LHCb
F. Ratnikov*, E. Zakharov  on behalf of the LHCb collaboration
Full text: pdf
Published on: August 02, 2019
In HEP experiments CPU resources required by MC simulations are constantly growing and become a very large fraction of the total computing power (greater than 75\%). At the same time the pace of performance improvements from technology is slowing down, so the only solution is a more efficient use of resources. Efforts are ongoing in the LHC experiments to provide multiple options for simulating events in a faster way when higher statistics is needed. A key of the success for this strategy is the possibility of enabling fast simulation options in a common framework with minimal action by the final user. In this talk we will describe the solution adopted in Gauss, the LHCb simulation software framework, to selectively exclude particles from being simulated by the Geant4 toolkit and to insert the corresponding hits generated in a faster way. The approach, integrated within the Geant4 toolkit, has been applied to the LHCb calorimeter but it could also be used for other subdetectors. The hits generation can be carried out by any external tool, e.g. by a static library of showers or more complex machine-learning techniques. In LHCb generative models, which are nowadays widely used for computer vision and image processing are being investigated in order to accelerate the generation of showers in the calorimeter. These models are based on maximizing the likelihood between reference samples and those produced by a generator. The two main approaches are Generative Adversarial Networks (GAN), that takes into account an explicit description of the reference, and Variational Autoencoders (VAE), that uses latent variables to describe them. We will present how both approaches can be applied to the LHCb calorimeter simulation, their advantages as well as their drawbacks.
DOI: https://doi.org/10.22323/1.340.0162
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.