Searches for high-mass resonances decaying to pairs of bosons using the ATLAS detector

Kirill Grevtsov*, on behalf of the ATLAS collaboration
Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
E-mail: kirill.grevtsov@cern.ch

Several beyond the Standard Model theories predict the existence of new heavy particles decaying into pairs of gauge bosons. This review summarizes the latest ATLAS results on searches for resonances decaying into W, Z, Higgs bosons or photons, based on datasets of 36 and 80 fb$^{-1}$ of pp collision data collected at 13 TeV. No excess of events is found over the Standard Model background-only expectation, exclusion limits are set for various hypotheses in a broad mass range.
1. Introduction

The discovery of a Higgs-like particle announced by the ATLAS and CMS collaborations in 2012 [1, 2] has been an important milestone in the understanding of the mechanism of electroweak (EW) symmetry breaking. The next step is to figure out whether this particle is the only one or if it is part of an extended Higgs sector as predicted by several extensions of the Standard Model (SM): composite Higgs models, heavy vector triplets and models with warped extra dimensions.

In these proceedings a collection of results is presented where the heavy resonances decay into diboson final states. The analyses are separated according to the diboson composition (W, Z, γ) and the decays of the bosons. Searches for heavy resonances decaying to WW with leptonic decays of W bosons are described in Section 2 using 36 fb$^{-1}$ of data. A search for fully hadronic decays of VV (WW, WZ, ZZ) is described in Section 3 using 80 fb$^{-1}$ of data, results of a search for a photon and a hadronically decaying boson (Z, W or H) are presented in Section 4 based on a dataset corresponding to an integrated luminosity of 36 fb$^{-1}$. The brief overview of searches are summarised in Section 5.

2. $WW \rightarrow e\nu\mu\nu$ decays

The search for a neutral heavy resonance H decaying to WW with a final state of $e\nu\mu\nu$ is described in detail in [3]. The search is performed for the production via quark-antiquark annihilation ($q\bar{q}A$), vector-boson fusion (VBF) or gluon-gluon fusion (ggF) process covering a mass range from 200 GeV up to 5 TeV for various benchmark models: a Higgs-like scalar in narrow (N) or large (L) width approximation scenarios 1, a two-Higgs-doublet model (2HDM), the Georgi-Machacek (GM) model, a heavy vector triplet model (HVT), a warped extra dimension model predicting Kaluza-Klein graviton excitations (G_{KK}) and an effective Lagrangian model (ELM).

The analysis studies opposite sign, different flavour leptons and categorises events into three signal regions (SR), two VBF enriched and one targeting ggF and $q\bar{q}A$. The main backgrounds ($t\bar{t}$ and non-resonant WW) are estimated with simulations and normalised using dedicated CRs, while the W+jets background was obtained with data-driven techniques.

As no excess over the background prediction is observed, upper limits at 95% CL on $\sigma_H \times B(H \rightarrow WW)$ are set for ggF(VBF) in the range of 0.2-4(3) pb at $m_H=200$ GeV and above 0.008(0.006) pb at 4(3) TeV are excluded at 95% CL by the quasi-inclusive ggF(VBF) NWA analysis. Constraints obtained in the LWA approximation, for all values of Γ_X/m_X are comparable to those obtained in the NWA case. The NWA limits are translated into exclusion contours for Type I and Type II 2HDM in the plane of $\tan\beta$ versus $\cos(\beta - \alpha)$. The current sensitivity is not sufficient to exclude the GM signal with masses between 200 GeV and 1 TeV. Heavy vector triplet signals below about 1.3 TeV are excluded at 95% CL. The observed limits exclude a KK graviton signal lighter than 1.1 TeV (750 GeV) with the $k/M_{Pl}=1(0.5)$, while the current sensitivity is not sufficient to exclude the ELM spin-2 VBF signal.

3. $VV \rightarrow qqqq$

A search for narrow resonances decaying into WW, WZ or ZZ boson pairs, with hadronic decays of V, is performed with 80 fb$^{-1}$ as described in [5]. The search covers diboson resonances

1The LWA approximation is studied for three hypotheses on the ratio between the resonance width and mass: 1%, 5%, and 10%
with masses in the range of 1.2-5.0 TeV for two specific benchmark models: a spin-1 HVT model with signals such as W' and Z' and a spin-2 Kaluza-Klein graviton.

Bosons produced in the decay of TeV-scale resonances are highly boosted and therefore are reconstructed in ATLAS as a single large radius parameter jet. This analysis uses a new unified object built from both tracking and calorimeter information, referred to as Track-CaloCluster [6]. Jet substructure and mass are exploited to enhance the separation between signal boson jets and jets from multijet background. The efficiency of the boson tagger is determined in a $V+$jet CR, by fitting the jet mass distribution after applying jet substructure cut. After boson-tagging, the data is categorised in five non-exclusive signal regions with different signal efficiencies. The signal model is taken from simulation and background parametrised with functional form. The modelling of the parametric shape tested in a dedicated fit control region in data.

A signal-plus-background fit is performed on the discriminant distribution m_{JJ}. No significant deviation is found, therefore upper limits on the production cross section times branching ratio to diboson final states for new resonances with masses between 1.2 and 5.0 TeV are set at the 95% CL, excluding the production of $WW + WZ$ from the HVT model A(B), with $g_V = 1(3)$ and masses in the range of 1.20-3.40(1.20-4.15) TeV. Production of a G_{KK} in the bulk RS model with $k/M_{Pl} = 1$ is excluded in the range of 1.20-1.90 TeV and 2.1-2.3 TeV, at the 95% CL.

4. Z/W/H + γ hadronic decays

A search for resonance decays to a photon and a Z, W or Higgs boson with subsequent hadronic decay of these bosons is presented and discussed in details in Ref. [7]. Searches for $Z\gamma$ ($W\gamma$) are carried out in the mass range of 1.0-6.8 TeV for spin-0 and 2 (spin-1) signals and for $H\gamma$ in the range of 1.0-3.0 TeV for spin-1 signal in the $q\bar{q}A$ channel.

This analysis looks for energetic photons and boosted bosons reconstructed as one large jet. Events are classified into four categories to improve the expected signal sensitivity, presented by different signal efficiency. The separation is based on exploiting b-tagging for Z and Higgs to $b\bar{b}$ (BTAG), cuts on jet substructure (D2) and jet mass window (VMASS) to separate hadronically decaying bosons from quark-gluon initiated jets. The signal is modelled by CrystalBall$+$gaussian, and the background is modelled as a functional form using spurious signal as uncertainty. γ+jet and SM γ+V are taken from simulation and multijet is estimated from data-driven techniques. The jet-photon mass distribution ($m_{J\gamma}$) are used as a discriminant variable.

The largest deviation from the SM expectation, corresponding to a significance of 2.7σ, is found in the $W\gamma$ search at $m_{J\gamma} = 2.5$ TeV. In the absence of any significant excess, limits are set on hadronic W boson decays. The limit varies from about 10 fb at $m_X = 1.0$ TeV to 0.1 fb for 6.6 TeV. The limit on $H\gamma$ production is evaluated for resonance masses between 1 and 3 TeV and varies between 10 fb and 4 fb depending on m_X. The limits on $Z\gamma$ production, vary from about 10 fb to 0.1 fb, for m_X between 1.0 and 6.8 TeV, for spin-0 and spin-2 hypothesis.

5. Summary

The ATLAS Collaboration has performed a rich search program for additional heavy resonances decaying into two bosons in various final states, testing several benchmark models. The searches presented in this review used datasets collected in pp collisions at $\sqrt{s}=13$ TeV corresponding to 36 and 80 fb$^{-1}$. No excess of events over the SM expectation was found in any of the
final states taken into account. Figure 1 presents a sketch, combining a variety of upper limits set on the collection of diboson channels, covering various spin hypotheses and a broad mass range from 200 GeV up to 6.8 TeV.

Figure 1: Combining upper limits set on various diboson channels, covering a broad mass range and spin hypotheses - graphical representation of results published in [3, 4, 5, 7, 8, 9, 10, 11]

References

