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The investigation of the properties of the theories in higher spacetime dimensions is of great im-
portance. It is believed that the goal to achieve unification of the forces of Nature is to formulate
theories which live in higher dimensions, D > 4. The supersymmetric theories and supergravity
theories exist in D > 4. Moreover, the superstring theories which are consistently constructed per-
turbatively hold the prospect of unifying gravitational interaction with the standard model. How-
ever, in such theories the extra dimensions must be compactified so that one can describe physics
at loweenergies i.e. energy scales accessible by present accelerators. It is argued that the com-
pactification scale might be at the Planck scale or in the vicinity of the GUT scale. However, in
certain alternative scenario, the compactification scales might be much lower. It is proposed that
the decompactification might occur at LHC energy (see the two references for review for this pro-
posal and the references therein [2, 3]). Moreover, the limits on the large compactification scenario
(large length scale) is not ruled of from the experiments at LHC. Thus there is considerable phe-
nomenological research in the large radius compactification scenario. Therefore, it is worthwhile
to investigate the analyticity properties of the scattering amplitude in higher dimensional field the-
ories.

The content of this talk is a brief account of my investigations of the analyticity of scattering am-
plitude in higher dimensional D > 4 field theories. The postulates of LSZ [1] are the starting point
for a theory of massive neutral scalar field. We focus on study of the analyticity property of the
scattering amplitude in the axiomatic formulation rather then appealing to any particular model.
The analyticity properties of scattering amplitudes have been studied in detail for D = 4 theories
and we refer the readers to two important books for more details and further references [4, 5].

The axioms are: al. The states of the system are represented in a Hilbert space, . All the physi-
cal observables are self-adjoint operators in the Hilbert space, A

a2. The theory is invariant under inhomogeneous Lorentz transformations.

a3. The energy-momentum of the states are defined. It follows from the requirements of Lorentz
and translation invariance that we can construct a representation of the orthochronous Lorentz
group. The representation corresponds to unitary operators, U (d,A), and the theory is invariant
under these transformations. Thus there are hermitian operators corresponding to spacetime trans-
lations, denoted as Pﬂ, with i =0,1,2,3,D — 1 which have following properties:

[ﬁﬂ , Po} =0 M
If % (®) is any Heisenberg operator then its commutator with Pﬂ is

[ﬁﬂ , ﬁ(;e)] =idy7 (%) 2)
It is assumed that .% carries no explicit spacetime depedance. If one chooses a representation where
the translation operators, Py, are diagonal and the basis vectors |p, & > span the Hilbert space, A,
such that

Pa

then more precise statements can be made:
e Existence of the vacuum: there is a unique invariant vacuum state |0 > which has the property

U(a,A)|0>=10> “4)
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The vacuum is unique and is Poincaré invariant.
o The eigenvalue of Py, Pq. 18 light-like, with po > 0. We are concerned only with massive stated
in this discussion. If we implement infinitesimal Poincare transformation on the vacuum state then

Fa

0>=0, and Mgy

0>=0 )

note that M v are the generators of Lorentz transformations.
ad. The locality: two bosonic local operators & (£) and &% (#') commute when they are separated
by spacelike distance.
[61(%),0,(£)] =0, (£—%)2<0 (6)

Our Minkowski metric convention is: £.§ = £09° — £'$! — ... —#P~1$P~1. For a neutral scalar field,
é(%): (]3()2)I = @(#) i.e. §(%) is hermitian. ® transforms as a scalar under inhomogeneous Lorentz
transformations

U(a,A)p(2)0(a,A)™" = ¢(At+a) (7)
In the frameworks of general relativistic quantum field theories, for D = 4,. the scattering ampli-
tude, F(s,7), is an analytic function of the center of mass energy squared, s, for fixed ¢, the mo-
mentum transfers squared. The dispersion relations in s have been proved for ¢ is within Lehmann-
Martin ellipse. This is derived from the axiomatic approach of LSZ [I]. Thus our task is to
generalize these results to arbitrary D > 4. Thus what are the steps neded to derive the dispersion
relations and then prove the analog of Froissart bound on total cross sections for D > 4 theories.?
First, to write a fixed-t dispersion relation, it is essential to prove the existence of Lehmann ellipses.
The scattering amplitude, in D > 4 admits a partial wave expansion; the basis functions being the
Gegenbauer polynomials which converges in the domain —1 < cos@ < +1. It is required to find an
enlarged domain of convergence for the amplitude, in cos@ which is generalization of Lehmann’s
technique. In order to achieve this goal, we have to prove analog of Jost-Lehmann-Dyson theorem
[6, 7] for D > 4. Next, we need to study the crossing properties of the amplitude. We mention en
passant, for D = 4, the existence of the Lehmann ellipses does not lead to the Froissart bound. It
is necessary to prove the Martin’s theorem which is the enlargement of the domain of analyticity
of the scattering amplitude. It is analytic the product of two complex domains: Dy ® D,. Thus a
generalized proof of Martin’s theorem is required. In what follows, we shall summarize our results
and we refer the reader to the two works which contains details [8, 9].
Let us incorporate the key features of the scattering amplitude, starting with the expression for the
four point amplitude as derived in the LSZ framework. The scattering is described by

< —Ppa — Pe out|py ppin>— < —pg — pc in|pa pp in >

— et [ PO, ) md) <~ palRO)0] ) >
= ( E;D /dedDye {pe-x—= ”"”(D —mz)(Dy—mfl)
< O[RY(x)9a(¥)|Pa pp in > ®)

where R, (x)@, () is the retarded product of fields and we have maintained the identities of fields
to keep track of the fields reduced. We write (I); (y) for the same reason. Our convention is that
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Pa+ Py + pe+ pa = 0 and the Mandelstam variables are: s = (p, + pp)?, t = (pa+ pa)?, u =
(Pa+pc)? and s+t +u = m%+m; +m2 +m?3 = 4m*. The scattering amplitude is defined to be

< —Pa — Pc OUt|py ppin>— < —pg — pcin|pg pp in >
= 278" (pa+ b+ pe+ Pa)F (Pas Py Pes Pa) ©)

We have used the relation (O, —m?)(0y — m2) (R (x)9a(y)) = R(jc(x)ja(y) with the tacit under-
standing that the r..s of the relation contains derivatives of §-functions in general. However, when
Fourier transformed, they lead to polynomials in s or t oru since the amplitude is Lorentz invariant.
The presence of such terms do not affect the analyticity properties of the amplitude. Thus, the
scattering amplitude (9) expressed as [?, ?]

iP. AN Z
F@wmﬂ:*/WwH<*mWM?ﬁPpmw> (10)

where P = @ In deriving (10) we have reduced ¢ and b. If we reduce ¢ and d the amplitude
is expressed as

—i0.z YA < .
F(pay.--pa) = f/dDze 0z ~ 0|RJC(§)]d(—§)\pa pp in > 11

The two equations derived above for the amplitude, F, are special cases of a generic retarded
function

Fula) = [ %2656 (z0) < 0;1[i3). in(~ 31|01 > (12

Jji and j,, are two generic currents and indices take values a,b, ¢,d. The two states |Q; > and |Q; >
carry D-dimensional momenta Qy and Q; respectively and these momenta are held fixed. Thus the
argument of Fg does not display Qr and Q; and we treat them as parameters for the discussions to
follow. We define two more functions for our later conveniences.

Fa=— [ dPze0(~2) < Q4l15) n(~ 311 > (13)

and
Fe(q) = [ @2 < Q1li(3). in(~3)1I: > (14)

From above definitions, it follows that

Fc(q) = Fr(q) — Fa(q) (15)

Since F¢ is commutator of two currents, we open up the commutator in terms of products of
currents j;(5)jm(—3) — jm(—2/2)ji(z/2). Then we introduce complete set of physical states,
Y. [P0y >< ppot,| =1 between the product of currents. This is how one obtains a spectral repre-
sentation for F¢(g) and then those for Fz(q) and F4(g). The microcausality plays a very important
role in deriving a representation for F¢(g) and hence for the advanced and retarded functions.

For the D > 4 theories, we have derived the generalized J-L-D theorem and shown that the singu-
larities of Fg(q) lie in the complex plane. This is the starting point to prove the existence of small
and large Lehmann ellipses for our case. Moreover, we also prove, for the case of the four point
amplitude, the crossing symmetry following the original arguments of Bros, Epstein and Glaser.
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Therefore, the results derived for the higher dimensional theories may listed as (i) the spectral
representations for Fc(g), Fr(g) and F(g). (ii) The generalized J-L-D theorem and proof of the
existence of the Lehmann ellipses and (iii) the crossing property of the four point amplitude. There-
fore, fixed-t dispersion relations can be written down.

The next task is to identify the product domains of analyticity of the amplitude. We have to resort
to the partial wave expansion. As an example consider D = 10 . The isometry group is SO(9)
for a massive scalar case. When we expand in the ’spherial harmonics’, the amplitude depends
on angular momenta denoted by /5, ...l5, magnetic quantum numbers my, ...my4; the corresponding
angles are 6, ...0s. The four azimuthal angles are ¢, ...¢4. The ’spherical harmonics’ are

Yh (65,..05:¢1,...04) (16)

For the scattering of scalars, there is only one scattering angle since rest of the angles are integrated
out. The basis functions are the Gegenbauer polynomials, Cl’l (cos0). The partial wave expansion
is [12]
F* =52 Y (14 1) £l (cosb) (17)
1=0
where A = %(D —3). The amplitude F*(s,7) = F(s,r). We analysed the analyticity properties of
F*(s,t). The partial wave unitarity relation assumes the form

0<|f*P< Imft <1 (18)

Indeed, we derived the analog of Martin’s theorem for the D-dimensional case utilizing partial wave
unitarity and positivity properties of the absorptive amplitude and its 7-derivatives. We showed
that a domain, |f| < R, R independent of s, where partial wave expansion converges and R was
determined in terms of m.

Therefore, (i) with the proof of J-L-D theorem, (ii) derivation of the Lehmann ellipses, (iii) crossing
symmetry and (iv) demonstration of fixed-¢ dispersion relation, generalized the proof the analyticity
of the amplitude for D > 4. We derived analog of the Froissart-Martin bound for D > 4. In order
to arrive at this bound we had proved the analog of Jin-Martin bound on the amplitude which fixed
the number of subtractions required in writing the dispersion relation. The result is

|F* (5,1 = 0)| < Constant s(lns)"~2 (19)
The desired bound is
1 D-2 s
Oiotal < B(A)| ———x Ins)”~ 20
total > ( )(2 /741112—8) ( ) ( )

2*T(A)L(A+1/2
where B(A) = %ﬂ)/)
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