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Augmentation of invisible information with respect to many hypothetical models of background
and signal processes, can highly improve the performance of the machine learning classifiers for
HEP event discrimination. In this regard, di-Higgs search in the channels with multiple invisible
final states, is one of the most important applications. Focusing on the di-Higgs channels with
2 bottom quarks + 0/1/2-leptons/taus + MET from bbWW and bbττ productions, we introduce
various augmentation schemes and ways to build better multi-class classifiers using deep neural
networks. We conclude our study with demonstration how much the new deep learning classifiers
supervised by physical augmentation, can improve the discovery potential of di-Higgs production
at the LHC, and discuss on the implications for future collider study.
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1. Topological Augmentation for di-Higgs Production and Decays & DNN Classifier

Motivation As demonstrated in many studies for machine learning HEP event classifiers nowa-
days, descent deep learning models which are trained even not-necessarily with high level features
variables induced from physical invariances, can have highly improved performances in experi-
mental data analysis, once provided by enough data [1]. However, still there exist obvious ways for
human physics models to contribute more crucially, and one of them would be involved with the
ways of feeding relevant data to the machines, under the supervision of physics models in purpose.
In this regard, in search for di-Higgs productions using the 2b + 2l + MET signatures from
hh→ bbWW and hh→ bbττ production channels (as signal), against the tt̄ production and decay
channels (as main background), we try to augment the invisible and missing momentum degrees of
freedom, with respect to every relevant hypothetical decay topologies in the signal and background
processes, and train deep neural networks under the supervision including the augmented missing
features, in order to improve the performance of machine learning event classifiers searching for
di-Higgs production at the LHC.
Augmentation Considering the final states including (2b+2l+MET), we categorized the signal and
background processes into 7-classes, by the number of leptonically decaying taus which can make
kinematically dinstinctive features with more complicated decay topology. As significant portion
of energy-momentum flow defining the decay topology, is carried by invisible neutrinos in each
topological classes, sizable portion of topological information is blind to machines when training
for classifiers with conventional visible features.
Using the program package OPTIMASS [2] which had been developed for kinematic mass func-
tion minimization with constraints, we augmented the missing momentum degrees of freedom by
imposing the sets of full kinematic constraints, each of which is distinctively defined in a given
topological class.
In result, as main augmented features from OPTIMASS, we can obtain 1) a minimized subsystem
mass - m̂(a) dubbed as an optimass of a subsystem - a, and 2) an optimized chi-square variable
- χ̂2 with which we call δ̂ ≡ 2log(χ̂), a compatibility-distance of an input event to be consistent
with the imposed set of kinematic constraints. Actually, these two augmented variables are not
independently calculated, but they are closely related and computed concurrently in the process
of constrained minimization of the subsystem mass w.r.t the invisible d.o.f defined in a given hy-
pothetical decay topology, so that the solution of OPTIMASS minimizes a subsystem mass in the
space which also mimizes the compatibility distance for the imposed constraints.
The solution of the OPTIMASS can also be considered as generalized MAOS momenta [3] for
under-constrained event topologies, just with more flexibility of choosing 1) the type of hypothet-
ical decay topology, 2) the form of target mass function to be minimized in the chosen topology,
and 3) the kinds of kinematic constraints which are consistent with the topology, so that the speci-
fied missing d.o.f are totally fixed while the mass minimization subject to the kinematic constraints.
Augmented Features Figure 1 shows some optimasses, m̂ in the [top row] with their compatibility-

distances, δ̂ in the [bottom row], for various event processes - (hh with 0/1/2-taus relics, and tt̄
with 0/1-tau relics), in the three augmention models - 1) [left column] ‘hh(2τ)’-augmentation:
hh→ 2b+2τ → 2b+2l + MET(4ν) , 2) [central column] ‘hh(1τ W ∗)’-augmentation : hh→ 2b+
W (→ l +ν)+W ∗(→ ν + τ)→ 2b+2l + MET(4ν), and 3) [right column] ‘tt̄(0τ)’-augmentation:
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Figure 1: 1) optimass m̂ [top-row] & 2) compatibility-distance δ̂ [bottom-row], for various signal and
background processes listed in each legend, for three distinctive augmentation models for each column -
a) hh(2τ) [left], b) hh(1τ W ∗) [central], and c) tt̄(0τ) [right]. More details in the paragraph - ‘Augmented
Features’.

tt̄→ bbWW → 2b+2l + MET(2ν).
As shown in the [bottom-left] panel, the di-Higgs with 2τ relic events tend to have smaller δ̂ values
than other background processes, when augmented by its own ’hh(2τ)’-model. For the same rea-
son, as shown in the [bottom-right] panel, the ttbar production with (0/1τ) relic events tend to have
smaller δ̂ values than the signal di-Higgs processes, if augmented by their own ’tt̄(0/1τ)’-model.
This phenomenon can also be checked in the [bottom-central] panel.
For the three topological augmentations for the various signal and background processes, a lot of
optimass m̂ variables can be defined and obtained. Actually there exist lots of interesting opti-
mass variables which can be consistently defined using the sub-decay systems in each distinctive
augmentation topology, and we shows some of them in the top-row as the following - 1) [top-
left] min{max[Mτ1 ,Mτ2 ]} in ‘hh(2τ)’-augmentation, 2) [top-center] min{Mh→WW ∗} in ‘hh(1τ W ∗)’-
augmentation, 3) [top-right] min{max[Mt1 ,Mt2 ]} ‘tt̄(0τ)’-augmentation.
Interestingly, the value of such m̂ variables of a process, if their objective mass function (to be
minimized) can be consistenly defined in a given augmentation model, tend to be ranged well be-
low the very value of the objective mass function for the true invisible momenta, if exist (like as
mT/T 2(W ) ≤ M(W )), while some other processes which are not consistent with the given aug-
mentation models, tend to violate and be squeezed out of the m̂max boundary. We can check this
behavior quite well with the top panel plots.
Training DNN Classifiers For the signal and background processes categorized by the 7 topolog-
ical classes, we augmented each process event data by the all 7 topological models, and utilized
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Figure 2: a) ROC (Receiver Operating Characteristic) curves, and b) relative significances of di-Higgs event
discrimination, using 3 different DNN classifiers, trained with augmented features (H2 and H1) over only
visible features H0. More details in the paragraph - ‘Training DNN Classifiers’

various optimasses, m̂ and compatibility distances, δ̂ , for the training of multi-class classifiers us-
ing deep neural networks in addition to the conventional feature variables used in [4].
Figure 2-a) [left] shows ROC curves of the (binarized by sig vs bg) DNN classifier models - H0,
H1, H2, which are trained with feature variable sets - {‘visible only’,‘augmented only’,‘visible +
augmented’}, respectively, and Figure 2-b) [right] shows the relative significances when using H1
and H2 with respect to the H0 model. We checked that significant gains can be obtained, when we
employ various augmented missing features for building machine learning HEP event classifiers,
especially with the demonstration of the performance in search for the rare (non-resonant SM) di-
Higgs productions at the LHC. More extensive studies including more broad signatures will also
be addressed in the work in progress [5].
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