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There is no doubt [1]-[3] that neutrino electromagnetic properties open a window to new
physics. The most general form [1] of a neutrino electromagnetic vertex function Λi j

µ (q) =(
γµ −qµ/q/q2

)[
f i j
Q (q2)+ f i j

A (q2)q2γ5

]
− iσµν qν

[
f i j
M(q2)+ i f i j

E (q2)γ5

]
, where Λµ(q) and form

factors fQ,A,M,E(q2) are 3×3 matrices in the space of massive neutrinos, in the case of coupling
with a real photon (q2 = 0) provides four sets of neutrino electromagnetic characteristics: 1)
the dipole magnetic moments µi j = f i j

M(0), 2) the dipole electric moments εi j = f i j
E (0), 3) the

millicharges qi j = f i j
Q (0) and 4) the anapole moments ai j = f i j

A (0). So far, there are no indica-
tions in favor of nonzero electromagnetic properties of neutrinos from either data from laboratory
experiments with neutrino fluxes from ground-based sources or from astrophysics observations.
However, the study of the electromagnetic properties of neutrinos attracts considerable attention.

The most well understood and studied are the dipole magnetic and electric moments. In a
minimal extension of the Standard Model the diagonal magnetic moment of a Dirac neutrino is
given [4] by µD

ii =
3eGF mi
8
√

2π2 ≈ 3.2×10−19
(

mi
1 eV

)
µB (µB is the Bohr magneton). Majorana neutrinos

can have only transition (off-diagonal) magnetic moments µM
i ̸= j. The most stringent constraints

on the effective neutrino magnetic moment are obtained with the reactor antineutrinos: µν <

2.9×10−11µB (GEMMA Collaboration [5]), and solar neutrinos: µνe ≤ 2.8×10−11µB (Borexino
Collaboration [6]).

An astrophysical bound (for both Dirac and Majorana neutrinos) is provided [7]-[9] by

observations of the properties of globular cluster stars:
(

∑i, j
∣∣µi j

∣∣2)1/2
≤ (2.2−2.6)×10−12µB.

A general and termed model-independent upper bound on the Dirac neutrino magnetic moment,
that can be generated by an effective theory beyond a minimal extension of the Standard Model,
has been derived in [10]: µν ≤ 10−14µB. The corresponding limit for transition moments of
Majorana neutrinos is much weaker [11].

In the theoretical framework with CP violation a neutrino can have nonzero electric mo-
ments εi j. In the laboratory neutrino scattering experiments for searching µν (for instance, in the
GEMMA experiment) the electric moment εi j contributions interfere with those due to µi j. Thus,
these kind of experiments also provide constraints on εi j. The astrophysical bounds on µi j are
also applicable for constraining εi j (see [7]-[9] and [12]).

In what follows below we give a fast flash on less know neutrino electromagnetic charac-
teristics, namely on the neutrino millicharge, charge radius and anapole moment and give some
comments on the future prospects of neutrino electromagnetic properties.
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1. Neutrino electric millicharge

There are extensions of the Standard Model that allow for nonzero neutrino electric mil-
licharges. This option can be provided by not excluded experimentally possibilities for hyper-
charhge dequantization or another new physics related with an additional U(1) symmetry peculiar
for extended theoretical frameworks. Neutrino millicharges are strongly constrained on the level
qν ∼ 10−21e0 (e0 is the value of an electron charge) from neutrality of the hydrogen atom.

A nonzero neutrino millicharge qν would contribute to the neutrino electron scattering in the
terrestrial experiments. Therefore, it is possible to get bounds on qν in the reactor antineutrino
experiments. The most stringent reactor antineutrino constraint qν ≤ 1.5×10−11e0 is obtained in
[13] (see also [14]) with use of the GEMMA experimental data [5].

A neutrino millicharge might have specific phenomenological consequences in astrophysics
because of new electromagnetic processes are opened due to a nonzero charge (see [1, 15]). Follow-
ing this line, the most stringent astrophysical constraint on neutrino millicharges qν ≤ 1.3×10−19e0

was obtained in [16]. This bound follows from the impact of the neutrino star turning mechanism
(ST ν) [16] that can be charged as a new physics phenomenon end up with a pulsar rotation fre-
quency shift engendered by the motion of escaping from the star neutrinos along curved trajectories
due to millicharge interaction with a constant magnetic field.

2. Neutrino charge radius and anapole moment

Even if a neutrino millicharge is vanishing, the electric form factor f i j
Q (q2) can still contain

nontrivial information about neutrino electromagnetic properties. The corresponding electromag-
netic characteristics is determined by the derivative of f i j

Q (q2) over q2 at q2 = 0 and is termed

neutrino charge radius, ⟨r2
i j⟩ = −6

d f i j
Q (q2)

dq2 |q2=0
(see [1] for the detailed discussions). Note that for

a massless neutrino the neutrino charge radius is the only electromagnetic characteristic that can
have nonzero value. In the Standard Model the neutrino charge radius and the anapole moment are
not defined separately, and there is a relation between these two values: a =− ⟨r2⟩

6 .
A neutrino charge radius contributes to the neutrino scattering cross section on electrons and

thus can be constrained by the corresponding laboratory experiments [17]. In all but one previous
studies it was claimed that the effect of the neutrino charge radius can be included just as a shift of
the vector coupling constant gV in the weak contribution to the cross section. However, as it has
been recently demonstrated in [18] within the direct calculations of the elastic neutrino-electron
scattering cross section accounting for all possible neutrino electromagnetic characteristics and
neutrino mixing, this is not the fact. The neutrino charge radius dependence of the cross section is
more complicated and there are, in particular, the dependence on the interference terms of the type
gV ⟨r2

i j⟩ and also on the neutrino mixing.

3. Conclusions and future prospects

The foreseen progress in constraining neutrino electromagnetic characteristics is related, first
of all, with the expected new results from the GEMMA experiment measurements of the reactor
antineutrino cross section on electrons at Kalinin Power Plant. The new set of data is expected
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to arrive next year. The electron energy threshold will be as low as 350 eV ( or even lower, up
to ∼ 200 eV ). This will provide possibility to test the neutrino magnetic moment on the level of
µν ∼ 0.9×10−12µB and also to test the millicharge on the level of qν ∼ 1.8×10−13e0 [13].

The current constraints on the flavour neutrino charge radius ⟨r2
e,µ,τ⟩ ≤ 10−32 − 10−31 cm2

from the scattering experiments differ only by 1 to 2 orders of magnitude from the values ⟨r2
e,µ,τ⟩ ≤

10−33 cm2 calculated within the minimally extended Standard Model with right-handed neutrinos
[17]. This indicates that the minimally extended Standard Model neutrino charge radii could be
experimentally tested in the near future. Note that there is a need to re-estimate experimental
constraints on ⟨r2

e,µ ,τ⟩ from the scattering experiments following new derivation of the cross section
[18] that properly accounts for the interference of the weak and charge radius electromagnetic
interactions and also for the neutrino mixing. Quite recently constraints on diagonal ⟨r2

e,µ,τ⟩ and
off-diagonal ⟨r2

e,µ,τ⟩ charged radii have been obtained [19] from the analysis of the data on coherent
elastic neutrino-nucleus scattering obtained in the COHERENT experiment [27, 28].

For the future progress in studying (or constraining) neutrino electromagnetic properties a
rather promising claim was made in [20, 21]. It was shown that even tine values of the Majorana
neutrino transition moments would probably be tested in future high-precision experiments with
the astrophysical neutrinos. In particular, observations of supernova fluxes in the JUNO experiment
(see [22] - [24]) may reveal the effect of collective spin-flavour oscillations due to the Majorana
neutrino transition moment µM

ν ∼ 10−21µB.
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