Search for CP violation and rare decays in charm sector at Belle

Yun-Tsung Lai*†

KEK

E-mail: ytlai@post.kek.jp

Using more than 920 fb$^{-1}$ data collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider, we report the first measurement of the T-odd moments in the decay $D^0 \rightarrow K_S^0 \pi^0 \pi^+ \pi^-$. We search for CP-violation in decays $D^0 \rightarrow K_S^0 K_S^0$ and $D^+ \rightarrow \pi^+ \pi^0$. All the results are consistent with no CP violation. We also report the result from the first search for D^0 decays to invisible final states. No significant signal yield is observed and an upper limit is set on the branching fraction at 90\% confidence level.
1. Search for CP Violation and Measurement of the Branching Fraction in the \(D^0 \rightarrow K_S^0 K_S^0\) Decay [1]

CP violation (CPV) in charm meson decays is predicted to be \(O(10^{-3})\) in Standard Model (SM), and it has not been observed yet [2, 3]. However, in the Single Cabibbo-Suppressed decays of \(D\) mesons, possible interference with New Physics (NP) amplitude could lead to non-zero CPV [4], which could lead to physics beyond the SM.

The time-integrated CP asymmetry \(A_{CP}\) is defined as

\[
A_{CP} = \frac{\Gamma(D \rightarrow f) - \Gamma(\bar{D} \rightarrow \bar{f})}{\Gamma(D \rightarrow f) + \Gamma(\bar{D} \rightarrow \bar{f})},
\]

where \(\Gamma\) is the partial decay width. \(A_{CP}\) includes the terms due to direct CPV and \(D^0 - \bar{D}^0\) mixing.

The raw asymmetry \(A_{raw}\) is measured with different flavors’ cases:

\[
A_{raw} = \frac{N(D \rightarrow f) - N(\bar{D} \rightarrow \bar{f})}{N(D \rightarrow f) + N(\bar{D} \rightarrow \bar{f})},
\]

where \(N\) is the fitted yield. \(A_{raw}\) consists of \(A_{CP}\) and other terms associated with detection efficiency of final-state particles. By measuring \(A_{raw}\) of another decay \(D \rightarrow f'\) with well-measured \(A_{CP}\), we can obtain \(A_{CP}(D \rightarrow f)\) by the relation \(\Delta A_{raw}(f, f') = \Delta A_{CP}(f, f')\). \(D \rightarrow f'\) can be utilized as the normalization mode for branching fraction measurement as well. We select \(D^0 \rightarrow K_S^0 \pi^0\) as \(D \rightarrow f'\) in this study.

The \(D^\pm\) candidates are reconstructed with an addition \(\pi^{\pm}_{slow}\) to identify \(D^0\)'s flavor and to suppress combinatorial background. The signal yield is extracted by an unbinned extended maximum likelihood fit on \(\Delta M \equiv M_{D^\pm} - M_{f^0}\). The fit is done simultaneously for \(D^+\) and \(D^-\) cases. We obtain \(\frac{\Delta \Gamma(D^0 \rightarrow K^0_S K^0_S)}{\Delta \Gamma(D^0 \rightarrow K^0_S \pi^0)} = (1.101 \pm 0.023)\%\) and \(A_{CP}(D^0 \rightarrow K^0_S K^0_S) = (-0.02 \pm 1.52)\%\), which is consistent with null asymmetry.

2. Search for CP Violation in the decay \(D^+ \rightarrow \pi^+ \pi^0\) at Belle [5]

CPV in charm meson decays is expected to be small in the SM. However, in the world average of \(\Delta A_{CP}(D^0 \rightarrow K^+ K^-, D^0 \rightarrow \pi^+ \pi^-) = (-0.656 \pm 0.154)\%\) [6], we found possible non-zero value in the difference, which could be a hint of NP. In addition, ref.[7] also suggests checking a sum rule related to three isospin related \(D \rightarrow \pi \pi\) modes’ asymmetry:

\[
R = \frac{A_{CP}(D^0 \rightarrow \pi^+ \pi^-)}{1 + \frac{4 \Gamma_{\pi^0}(\frac{\tau_{D^0}}{\tau_{f^0}} + \frac{2 \Gamma_{\pi^0}}{3 \tau_{D^0}})}{1 + \frac{4 \Gamma_{\pi^0}(\frac{\tau_{D^0}}{\tau_{f^0}} + \frac{2 \Gamma_{\pi^0}}{3 \tau_{D^0}})}} + \frac{A_{CP}(D^0 \rightarrow \pi^0 \pi^0)}{1 + \frac{4 \Gamma_{\pi^0}(\frac{\tau_{D^0}}{\tau_{f^0}} + \frac{2 \Gamma_{\pi^0}}{3 \tau_{D^0}})}{1 + \frac{4 \Gamma_{\pi^0}(\frac{\tau_{D^0}}{\tau_{f^0}} + \frac{2 \Gamma_{\pi^0}}{3 \tau_{D^0}})}} + \frac{A_{CP}(D^+ \rightarrow \pi^+ \pi^0)}{1 + \frac{4 \Gamma_{\pi^0}(\frac{\tau_{D^0}}{\tau_{f^0}} + \frac{2 \Gamma_{\pi^0}}{3 \tau_{D^0}})}{1 + \frac{4 \Gamma_{\pi^0}(\frac{\tau_{D^0}}{\tau_{f^0}} + \frac{2 \Gamma_{\pi^0}}{3 \tau_{D^0}})}}},
\]

where \(\tau\) is the lifetime of \(D\) mesons. If \(R\) is consistent 0 while \(A_{CP}(D^+ \rightarrow \pi^+ \pi^0)\) is not, it would be a hint of NP.

In this study, we select \(D^+ \rightarrow K_S^0 \pi^+\) as \(D \rightarrow f'\). Both the \(D^{*\pm} \rightarrow D^{\pm} \pi^0_{slow}\) candidates and the untagged \(D^\pm\) candidates are included in the measurement to increase statistics. Signal yield is extracted by a fit on \(M_{D^{*\pm}}\). We obtain \(A_{CP}(D^+ \rightarrow \pi^+ \pi^0) = (+2.32 \pm 1.24 \pm 0.23)\%\) and \(R = (-2.2 \pm 2.7) \times 10^{-3}\).
3. First measurement of T-odd moments in $D^0 \rightarrow K^0_S \pi^0 \pi^+ \pi^-$ [8]

The self-conjugated $D^0 \rightarrow K^0_S \pi^0 \pi^+ \pi^-$ can be used for a precise test of CPV, and the large statistics due to large branching fraction of 5.2% [9] can enhance the precision of measurement with $O(10^{-3})$. This decay is sensitive to CPV via the CPT theorem [10].

To measure T violation [11, 12, 13, 14], two asymmetry parameters are defined by using scalar triple products $C_T = p_{K_S} \cdot (p_{\pi^+} \times p_{\pi^-})$ and $T_T = p_{K_S} \cdot (p_{\pi^-} \times p_{\pi^+})$:

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)}, \quad \bar{A}_T = \frac{\Gamma(-C_T > 0) - \Gamma(-C_T < 0)}{\Gamma(-C_T > 0) + \Gamma(-C_T < 0)},$$

(3.1)

for D^0 and \bar{D}^0. Non-zero value of A_T or \bar{A}_T could be due to the final state effect. To eliminate possible final state effect in A_T and \bar{A}_T, we define

$$a_{CP}^{T-\text{odd}} = \frac{1}{2}(A_T - \bar{A}_T).$$

(3.2)

Nonzero $a_{CP}^{T-\text{odd}}$ would indicate a clear T violation.

$D^{\pm} \rightarrow D^0 \pi^\pm_{\text{slow}}$ is also reconstructed in this study. We perform a 2-dimensional fit on ΔM and M_{D^0} of the four cases ($C_T > 0, C_T < 0, -C_T > 0$, and $-C_T < 0$) simultaneously to obtain the yields of the four cases and the asymmetry parameters. We obtain $A_T = (11.60 \pm 0.19\%$ and $a_{CP}^{T-\text{odd}} = (-0.28 \pm 1.38^{+0.23}_{-0.76}) \times 10^{-3}$. Further measurements in nine exclusive regions of the $K^0_S \pi^0 \pi^+ \pi^-$ phase space with resonance ($K^0_S \omega, K^0_S \eta, K^- \rho^+, K^{*+} \rho^-, K^{*-} \pi^+ \pi^0, K^{*+} \pi^- \pi^0, K^{*+} \pi^+ \pi^-, K^0_S \rho^+ \pi^-$, and the reminder) also show no evidence of CPV in those bins.

4. Search for D^0 decays to invisible final states at Belle [15]

Branching fractions of D decay to $v\bar{v}$ is helicity suppressed [16] in SM and is predicted as 1.1×10^{-30}. Under various types of Dark Matter models [16], branching fraction of D decay to invisible final state can be enhanced to $O(10^{-15})$.

To identify D^0 decay with invisible final state and to measure its absolute branching fraction, we utilize the charm tagger method [17, 18, 19, 20] to select an recoil D^0 sample by reconstructing the process $e^+e^- \rightarrow \bar{c}c \rightarrow D^{(s)}_{\text{tag}}X_{\text{frag}}D^-_{\text{sig}}$ with $D^-_{\text{sig}} \rightarrow \bar{D}_0^0 \pi^-_{\text{slow}}$, where $D^{(s)}_{\text{tag}}$ is a charm particle as a tag, X_{frag} is the fragmentation system with a few light unflavored particles, π^-_{slow} is a charged pion from $\bar{D}_0^0_{\text{sig}}$, and $\bar{D}_0^0_{\text{sig}}$ is the recoil D^0. By the fit on the $M_{D^0} \equiv M_{\text{miss}}(D^{(s)}_{\text{tag}}X_{\text{frag}}\pi^-_{\text{slow}})$, we obtain 694505$^{+1030}_{-1472}$ inclusive D^0 yield with Belle data.

Invisible D^0 decays are identified by requiring no remaining final-state particles (e.g. tracks, π^0, and K^0_L) associated with $\bar{D}_0^0_{\text{sig}}$. In addition to M_{D^0}, we also use the residual energy in the Electromagnetic Calorimeter (E_{ECL}) to identify signals. A two-dimensional extended unbinned maximum likelihood fit on M_{D^0} and E_{ECL} is performed, and we obtain a signal yield of $-10.2^{+22.1}_{-20.8}$. Since there is no significant yield observed, we set an upper limit of 8.8×10^{-5} for $\mathcal{B}(D^0 \rightarrow \text{invisible})$ at the 90% confidence level.
5. summary

We report the CPV measurement in $D^0 \rightarrow K_S^0 K_S^0$ and $D^+ \rightarrow \pi^+ \pi^0$ decays, first measurement of T-odd moments in $D^0 \rightarrow K_S^0 \pi^0 \pi^+ \pi^-$, and the first search for rare decay D^0 decays to invisible final states by using more than 920 fb$^{-1}$ data of Belle. All the CPV results show null asymmetry, and we observe no significant yield for the $D^0 \rightarrow$invisible decay and we set an upper limit on the branching fraction at 90% confidence level for it. In Belle II, we expect 40 times of integrated luminosity. The CPV and rare decays measurements of charm mesons can be further improved with higher precision.

References