

Observation of the decay $D^0 ightarrow K^- \pi^+ e^+ e^-$

Fergus WILSON*†

STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon, OX11 0QX, UK E-mail: Fergus.Wilson@stfc.ac.uk

We report the observation of the rare charm decay $D^0 \to K^- \pi^+ e^+ e^-$, based on 468 fb⁻¹ of $e^+ e^$ annihilation data collected at or close to the center-of-mass energy of the $\Upsilon(4S)$ resonance with the BABAR detector at the SLAC National Accelerator Laboratory. We find the branching fraction in the invariant mass range $0.675 < m(e^+e^-) < 0.875 \,\text{GeV}/c^2$ of the electron pair to be $\mathscr{B}(D^0 \to K^-\pi^+e^+e^-) = (4.0 \pm 0.5 \pm 0.2 \pm 0.1) \times 10^{-6}$, where the first uncertainty is statistical, the second systematic, and the third due to the uncertainty in the branching fraction of the decay $D^0 \to K^-\pi^+\pi^+\pi^-$ used as a normalization mode. The significance of the observation corresponds to 9.7 standard deviations including systematic uncertainties. This result is consistent with the recently reported $D^0 \to K^-\pi^+\mu^+\mu^-$ branching fraction, measured in the same invariant mass range, and with the value expected in the Standard Model.

The 39th International Conference on High Energy Physics (ICHEP2018) 4-11, July 2018 Seoul, Korea

*Speaker. [†]on behalf of the BABAR Collaborations

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). The decay $D^0 \to K^- \pi^+ e^+ e^-$ is expected to be very rare in the standard model (SM) as it cannot occur at tree level. Short-distance contributions to the $D^0 \to K^- \pi^+ e^+ e^-$ branching fraction proceed through loop and box diagrams and are expected to be $\mathcal{O}(10^{-9})$. However, decays with long-distance contributions, such as $D^0 \to XV$, where X is an accompanying particle or particles and V is a vector or pseudoscalar meson decaying to two leptons, could contribute at the level of $\mathcal{O}(10^{-6})$ through photon pole amplitudes or vector meson dominance,

Over the last few years there have been a number of measurements of the decays of *B* mesons to final states involving one or more charged leptons. Some of these measurements suggest a possible deviation from the assumption that all leptons couple equally (see for example Refs [1, 2, 3]). The possibility therefore exists that a deviation from lepton universality will be seen in *D* meson decays.

Recently, the LHCb Collaboration measured $\mathscr{B}(D^0 \to K^- \pi^+ \mu^+ \mu^-) = (4.17 \pm 0.12 \pm 0.40) \times 10^{-6}$ in the mass range $0.675 < m(\mu^+ \mu^-) < 0.875 \,\text{GeV}/c^2$, where the decay is dominated by the ρ^0 and ω resonances [4].

We report here the observation of the decay $D^0 \to K^- \pi^+ e^+ e^-$ with data recorded with the *BABAR* detector at the PEP-II asymmetric-energy e^+e^- collider operated at the SLAC National Accelerator Laboratory. The data sample corresponds to 424 fb⁻¹ of e^+e^- collisions collected at the center-of-mass energy of the $\Upsilon(4S)$ resonance (onpeak) and an additional 44 fb⁻¹ of data collected 40 MeV below the $\Upsilon(4S)$ resonance (offpeak) [5]. The *BABAR* detector is described in detail in Refs. [6, 7].

Events are required to contain at least five charged tracks. Candidate D^0 mesons are formed from four charged tracks reconstructed with the appropriate mass hypothesis for the $D^0 \rightarrow K^- \pi^+ e^+ e^$ and $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ decays. (Charge conjugation is implied throughout.) Particle identification (PID) is applied to the charged tracks and the same criteria are applied to the signal and normalization modes [7]. The four tracks must form a good-quality vertex with a χ^2 probability for the vertex fit greater than 0.005. In the case of $D^0 \rightarrow K^- \pi^+ e^+ e^-$, a bremsstrahlung energy recovery algorithm is applied to the electrons. The electron-positron pair must have an invariant mass $m(e^+e^-) > 0.1 \text{ GeV}/c^2$. The D^0 candidate momentum in the PEP-II center-of-mass system, p^* , must be greater than 2.4 GeV/c.

The candidate D^{*+} is formed by combining the D^0 candidate with a charged pion with a momentum in the laboratory frame greater than 0.1 GeV/c. The pion is required to have a charge opposite to that of the kaon in the D^0 decay. A vertex fit is performed with the D^0 mass constrained to its known value and the requirement that the D^0 meson and the pion originate from the interaction region. The χ^2 probability of the fit is required to be greater than 0.005. The D^0 meson mass $m(D^0)$ must be in the range $1.81 < m(D^0) < 1.91 \text{ GeV}/c^2$ and the mass difference, $\Delta m = m(D^{*+}) - m(D^0)$, between the reconstructed masses of the D^{*+} and D^0 candidates is required to satisfy $0.143 < \Delta m < 0.148 \text{ GeV}/c^2$. The average reconstruction efficiency for the $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ decay is $\hat{\varepsilon}_{norm} = (20.1 \pm 0.2)\%$. In the mass range $0.675 < m(e^+e^-) < 0.875 \text{ GeV}/c^2$, the average reconstruction efficiency for the $D^0 \rightarrow K^- \pi^+ e^+ e^-$ decay is $\hat{\varepsilon}_{sig} = (8.9 \pm 0.2)\%$.

The $D^0 \to K^- \pi^+ e^+ e^-$ branching fraction is determined relative to that of the normalization decay channel $D^0 \to K^- \pi^+ \pi^+ \pi^-$ using

$$\frac{\mathscr{B}(D^0 \to K^- \pi^+ e^+ e^-)}{\mathscr{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-)} = \frac{\hat{\varepsilon}_{\text{norm}}}{N_{\text{norm}}} \frac{\mathscr{L}_{\text{norm}}}{\mathscr{L}_{\text{sig}}} \sum_{i}^{N_{\text{sig}}} \frac{1}{\varepsilon_{\text{sig}}^i},\tag{1}$$

where $\mathscr{B}(D^0 \to K^-\pi^+\pi^+\pi^-)$ is the branching fraction of the normalization mode [8], and N_{norm} and $\hat{\varepsilon}_{\text{norm}}$ are the $D^0 \to K^-\pi^+\pi^+\pi^-$ fitted yield and the reconstruction efficiency calculated from simulated $D^0 \to K^-\pi^+\pi^+\pi^-$ decays, respectively. The fitted $D^0 \to K^-\pi^+e^+e^-$ signal yield is represented by N_{sig} and $\varepsilon_{\text{sig}}^i$ is the reconstruction efficiency for each signal candidate *i* calculated as a function of $m(e^+e^-)$ and $m(K^-\pi^+)$ from simulated $D^0 \to K^-\pi^+e^+e^-$ decays. The symbols \mathscr{L}_{sig} and $\mathscr{L}_{\text{norm}}$ represent the integrated luminosities used for the signal $D^0 \to K^-\pi^+e^+e^$ decay (468.2±2.0 fb⁻¹) and the normalization $D^0 \to K^-\pi^+\pi^+\pi^-$ decay (39.3±0.2 fb⁻¹), respectively [5].

The $D^0 \to K^- \pi^+ e^+ e^-$ and $D^0 \to K^- \pi^+ \pi^+ \pi^-$ yields are determined from extended unbinned maximum likelihood fits to the Δm and the four-body mass distributions. Asymmetric Gaussianlike and Cruijff functions are used for the peaking features and Chebychev polynomials or ARGUS functions [9] for the backgrounds. The fitted yield for the $D^0 \to K^- \pi^+ \pi^+ \pi^-$ normalization data sample is 260870 ± 520 candidates. For the $D^0 \to K^- \pi^+ e^+ e^-$ signal mode, the fitted yield is 68 ± 9 candidates in the range $0.675 < m(e^+e^-) < 0.875 \text{ GeV}/c^2$. The significance $S = \sqrt{-2\Delta \ln \mathscr{L}}$ of the signal yield in this mass range, including statistical and systematic uncertainties, is 9.7 standard deviations (σ), where $\Delta \ln \mathscr{L}$ is the change in the log-likelihood from the maximum value to the value when the number of $D^0 \to K^- \pi^+ e^+ e^-$ signal candidates is set to $N_{\text{sig}} = 0$.

Figure 1 shows the results of the fit to the $m(K^-\pi^+e^+e^-)$ and Δm distributions of the $D^0 \rightarrow K^-\pi^+e^+e^-$ signal mode in the mass range $0.675 < m(e^+e^-) < 0.875 \text{ GeV}/c^2$. Figure 2 shows the projection of the fit to the $D^0 \rightarrow K^-\pi^+e^+e^-$ signal mode as a function of $m(e^+e^-)$ and $m(K^-\pi^+)$, where the background has been subtracted using the *sPlot* technique [10]. A peaking structure is visible in $m(e^+e^-)$ centered near the ρ^0/ω masses. A broader structure is seen in $m(K^-\pi^+)$ near the known mass of the $\overline{K^*}(892)^0$ meson. Both distributions are similar to the distributions shown in Ref. [4] for the decay $D^0 \rightarrow K^-\pi^+\mu^+\mu^-$.

Figure 1: Fits to $D^0 \to K^- \pi^+ e^+ e^-$ data distributions for (a) $m(K^- \pi^+ e^+ e^-)$ and (b) Δm mass in the mass range 0.675 $< m(e^+e^-) < 0.875 \,\text{GeV}/c^2$.

The overall systematic uncertainty in the $D^0 \to K^-\pi^+e^+e^-$ branching fraction is 3.8%, where the uncertainty in the $D^0 \to K^-\pi^+\pi^+\pi^-$ branching fraction is excluded [8]. The branching fraction $\mathscr{B}(D^0 \to K^-\pi^+e^+e^-)$ in the mass range $0.675 < m(e^+e^-) < 0.875 \text{ GeV}/c^2$ is determined to be $(4.0\pm0.5\pm0.2\pm0.1)\times10^{-6}$, where the first uncertainty is statistical, the second systematic, and the third comes from the uncertainty in $\mathscr{B}(D^0 \to K^-\pi^+\pi^+\pi^-)$ [8]. This result is compatible

Figure 2: Projections of the fits to the $D^0 \to K^- \pi^+ e^+ e^-$ data distributions onto (a) $m(e^+e^-)$ and (b) $m(K^-\pi^+)$ in the mass range $0.675 < m(e^+e^-) < 0.875 \,\text{GeV}/c^2$.

within the uncertainties with $\mathscr{B}(D^0 \to K^- \pi^+ \mu^+ \mu^-)$ reported in Ref. [4] and with SM predictions [11].

References

- [1] BABAR COLLABORATION collaboration, J. P. Lees et al., Measurement of an excess of $\overline{B} \to D^{(*)}\tau^-\overline{\nu}_{\tau}$ decays and implications for charged Higgs bosons, Phys. Rev. D 88 (2013) 072012.
- [2] BELLE COLLABORATION collaboration, Y. Sato et al., *Measurement of the branching ratio of* $\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}$ relative to $\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_{\ell}$ decays with a semileptonic tagging method, Phys. Rev. D 94 (2016) 072007.
- [3] LHCB COLLABORATION collaboration, R. Aaij et al., Test of lepton flavor universality by the measurement of the B⁰ → D^{*−}τ⁺ν_τ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013.
- [4] LHCB COLLABORATION collaboration, R. Aaij et al., *First observation of the decay* $D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-$ in the $\rho^0 - \omega$ region of the dimuon mass spectrum, *Phys. Lett. B* **757** (2016) 558.
- [5] BABAR COLLABORATION collaboration, J. P. Lees et al., *Time-Integrated luminosity recorded by the* BABAR detector at the PEP-II e^+e^- collider, *Nucl. Instrum. Meth. A* **726** (2013) 203.
- [6] BABAR COLLABORATION collaboration, B. Aubert et al., *The BABAR detector*, *Nucl. Instrum. Meth. A* 479 (2002) 1.
- [7] BABAR COLLABORATION collaboration, B. Aubert et al., *The BABAR Detector: Upgrades, Operation and Performance, Nucl. Instrum. Meth. A* **729** (2013) 615.
- [8] PARTICLE DATA GROUP collaboration, M. Tanabashi et al., *Review of particle physics*, *Phys. Rev. D* 98 (2018) 030001.
- [9] ARGUS COLLABORATION collaboration, H. Albrecht et al., Search for hadronic $b \rightarrow u$ decays, *Phys. Lett. B* **241** (1990) 278.
- [10] M. Pivk and F. R. Le Diberder, sPlot: A statistical tool to unfold data distributions, Nucl. Instrum. Meth. A 555 (2005) 356.
- [11] L. Cappiello, O. Cata and G. D'Ambrosio, *Standard Model prediction and new physics tests for* $D^0 \rightarrow h^+h^-\ell^+\ell^-(h=\pi,K:\ell=e,\mu)$, *JHEP* **04** (2013) 135.