PS

Hyperon studies at BESIII

Andrzej Kupsc* for the BESIII Collaboration

Uppsala University E-mail: Andrzej.Kupsc@physics.uu.se

Recent results on $e^+e^- \rightarrow \Lambda \bar{\Lambda}$ from BESIII Collaboration are reported: (*i*) for the process at J/ψ and (*ii*) for the non-resonant production.

(*i*) Using a data sample of $1.31 \times 10^9 J/\psi$ events we report the first observation of spin polarization of Λ and $\bar{\Lambda}$ hyperons. The phase between the helicity flip and helicity non-flip amplitudes of $\Delta \Phi = (42.4 \pm 0.6 \pm 0.5)^\circ$ is determined. The decay asymmetries for $\Lambda \to p\pi^ (\alpha_-)$, $\bar{\Lambda} \to \bar{p}\pi^+$ (α_+) and $\bar{\Lambda} \to \bar{n}\pi^0$ $(\bar{\alpha}_0)$ are measured to be $\alpha_- = 0.750 \pm 0.009 \pm 0.004$, $\alpha_+ = -0.758 \pm 0.010 \pm 0.007$ and $\bar{\alpha}_0 = -0.692 \pm 0.016 \pm 0.006$, respectively. The obtained value of α_- is higher by $(17 \pm 3)\%$ than the world average of 0.642 ± 0.013 used for all Λ polarization measurements since 1978. The *CP* asymmetry $A_{CP} = (\alpha_- + \alpha_+)/(\alpha_- - \alpha_+)$ of $-0.006 \pm 0.012 \pm 0.007$ and the ratio $\bar{\alpha}_0/\alpha_+ = 0.913 \pm 0.028 \pm 0.012$ are also measured.

(*ii*) Using 66.9 pb⁻¹ collected at $\sqrt{s} = 2.396$ GeV Λ form factors are determined. This is the first complete determination of the time-like elastic form factors G_M and G_E for any baryon: the ratio $R = |G_E/G_M|$ and the relative phase $\Delta \Phi = \arg(G_E/G_M)$. Using the decay asymmetry parameters from analysis (*i*) as input, the obtained values are $R = 0.96 \pm 0.14 \pm 0.02$ and $\Delta \Phi = (37 \pm 12 \pm 6)^\circ$, respectively. The normalization of the form factors is set by the determined Born cross section cross section of $\sigma_{Born} = 119.0 \pm 5.3 \pm 5.1$ pb.

In a separate analysis a surprisingly large Born cross section of $305 \pm 45^{+66}_{-36}$ pb is measured at \sqrt{s} =2.2324 GeV, which is 1.0 MeV above the threshold.

The 39th International Conference on High Energy Physics (ICHEP2018) 4-11 July, 2018 Seoul, Korea

*Speaker.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. The $e^+e^- \rightarrow \Lambda \bar{\Lambda}$ process at the J/ψ resonance ([1, 2])

The well-defined and simple initial state makes baryon-antibaryon pair production at an electronpositron collider an ideal system to test fundamental symmetries in the baryon sector, in particular when the probability of the process is enhanced by a resonance such as the J/ψ [3]. The spin orientations of the baryon and antibaryon are correlated and, for spin one-half baryons, the pair is produced either with the same or opposite helicities. The transition amplitudes to the respective spin states can acquire a relative phase, $\Delta\Phi$ due to the strong interaction in the final state, leading to a time-reversal-odd observable: a transverse spin polarization of the baryons [4, 5]. This effect has no prediction and was previously neglected for the baryon pairs from J/ψ decays [6].

The polarization of the Λ hyperons, can be determined using the angular distribution of the daughter particles. For example, for the $\Lambda \to p\pi^-$ decay with the Λ hyperon polarization given by the \mathbf{P}_{Λ} vector, the angular distribution of the daughter protons is $\frac{1}{4\pi} (1 + \alpha_- \mathbf{P}_{\Lambda} \cdot \hat{\mathbf{n}})$, where $\hat{\mathbf{n}}$ is the unit vector along the proton momentum in the Λ rest frame and α_- is the asymmetry parameter of the decay [7]. The corresponding parameters α_+ for $\bar{\Lambda} \to \bar{p}\pi^+$, α_0 for $\Lambda \to n\pi^0$, and $\bar{\alpha}_0$ for $\bar{\Lambda} \to \bar{n}\pi^0$ are defined in the same way [8]. The joint angular distribution of $J/\psi \to \Lambda\bar{\Lambda}$ ($\Lambda \to f$ and $\bar{\Lambda} \to \bar{f}$, $f = p\pi^-$ or $n\pi^0$) depends on the Λ and $\bar{\Lambda}$ polarization and spin correlation of the decay chain $J/\psi \to (\Lambda \to p\pi^-)(\bar{\Lambda} \to \bar{p}\pi^+)$ can be expressed as [6]:

$$\mathscr{W}(\boldsymbol{\xi}; \boldsymbol{\alpha}_{\psi}, \Delta \Phi, \boldsymbol{\alpha}_{-}, \boldsymbol{\alpha}_{+}) = 1 + \boldsymbol{\alpha}_{\psi} \cos^{2}\theta$$

$$+ \boldsymbol{\alpha}_{-} \boldsymbol{\alpha}_{+} \left\{ \sin^{2}\theta \left(n_{1,x}n_{2,x} - \boldsymbol{\alpha}_{\psi}n_{1,y}n_{2,y} \right) + \left(\cos^{2}\theta + \boldsymbol{\alpha}_{\psi} \right) n_{1,z}n_{2,z} + \sqrt{1 - \boldsymbol{\alpha}_{\psi}^{2}} \cos \Delta \Phi \sin 2\theta \frac{n_{1,x}n_{2,z} + n_{1,z}n_{2,x}}{2} \right\}$$

$$+ \sqrt{1 - \boldsymbol{\alpha}_{\psi}^{2}} \sin(\Delta \Phi) \sin \theta \cos \theta \left(\boldsymbol{\alpha}_{-}n_{1,y} + \boldsymbol{\alpha}_{+}n_{2,y} \right),$$

$$(1.1)$$

where $\hat{\mathbf{n}}_1$ ($\hat{\mathbf{n}}_2$) is the unit vector in the direction of the nucleon (antinucleon) in the rest frame of Λ ($\bar{\Lambda}$). The components of these vectors are expressed using a common coordinate system defined in Ref. [2]. The terms multiplied by $\alpha_-\alpha_+$ represent the contribution from $\Lambda\bar{\Lambda}$ spin correlations, while the terms multiplied by α_- and α_+ separately represent the contribution from the polarizations. If all three contributions in Eq. (1.1) are non-zero an unambiguous determination of the parameters α_{Ψ} and $\Delta\Phi$ and the decay asymmetries α_- , α_+ is possible.

The analysis is based on $1.31 \times 10^9 J/\psi$ events collected with the BESIII detector. The Λ hyperons are reconstructed using their $p\pi^-$ decays and the $\bar{\Lambda}$ hyperons using their $\bar{p}\pi^+$ or $\bar{n}\pi^0$ decays. The sizes of the final data samples are 420,593 and 47,009 events with an estimated background of 399 ± 20 and 66.0 ± 8.2 events for the $p\pi^-\bar{p}\pi^+$ and $p\pi^-\bar{n}\pi^0$ final states, respectively. The background contribution is determined from Monte Carlo (MC) simulation including all known J/ψ decays. For each event the full set of the kinematic variables $\boldsymbol{\xi}$ is reconstructed. The free parameters describing the angular distributions for the two data sets — α_{ψ} , $\Delta\Phi$, α_- , α_+ , and $\bar{\alpha}_0$ — are determined from a simultaneous unbinned maximum likelihood fit using angular distribution given by Eq. (1.1). A clear polarization, strongly dependent on the Λ direction, $\cos \theta$, is observed for Λ and $\bar{\Lambda}$. In Fig. 1, the moment $\mu(\cos \theta) = (m/N) \sum_i^{N_k} (n_{1,y}^{(i)} - n_{2,y}^{(i)})$, related to the polarization, is calculated for m = 50 bins in $\cos \theta$. N is the total number of events in the data sample and N_k is the number of events in k-th $\cos \theta$ bin. The expected angular dependence is $\mu(\cos \theta) \sim \sqrt{1 - \alpha_{\psi}^2}(\alpha_- - \alpha_+)\sin \Delta\Phi \cos \theta \sin \theta$ for the acceptance corrected data (compare

Figure 1: Moments $\mu(\cos\theta)$ as a function of $\cos\theta$ for $e^+e^- \to (\Lambda \to p\pi^-)(\bar{\Lambda} \to \bar{p}\pi^+)$ data samples at (a) $\sqrt{s} = 3.096$ GeV $(J/\psi \text{ mass})$ and (b) $\sqrt{s} = 2.396$ GeV. The points with error bars are the data, and the solid-line histograms are the global fit results. The dashed histograms show the no polarization scenario $(\mathscr{W}(\boldsymbol{\xi}; 0, 0, 0, 0) \equiv 1)$.

Table 1: Summary of the results: the $J/\psi \to \Lambda \bar{\Lambda}$ angular distribution parameter α_{ψ} , the phase $\Delta \Phi$, the asymmetry parameters for the $\Lambda \to p\pi^-(\alpha_-)$, $\bar{\Lambda} \to \bar{p}\pi^+(\alpha_+)$ and $\bar{\Lambda} \to \bar{n}\pi^0(\bar{\alpha}_0)$ decays, the *CP* asymmetry A_{CP} , and the ratio $\bar{\alpha}_0/\alpha_+$.

Parameters	This work	Previous results
άμ	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 [1]
$\Delta \Phi$	$(42.4 \pm 0.6 \pm 0.5)^{\circ}$	-
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 [8]
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 [8]
$\bar{\alpha}_0$	$-0.692\pm0.016\pm0.006$	_
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 [8]
$ar{lpha}_0/lpha_+$	$0.913 \pm 0.028 \pm 0.012$	_

Eq. (1.1)). The phase between helicity flip and helicity conserving transitions is determined to be $\Delta \Phi = (42.4 \pm 0.6 \pm 0.5)^{\circ}$. This large value of the phase enables a simultaneous determination of the decay asymmetry parameters for $\Lambda \rightarrow p\pi^-$, $\bar{\Lambda} \rightarrow \bar{p}\pi^+$, and $\bar{\Lambda} \rightarrow \bar{n}\pi^0$ as given in Table 1. The value of $\alpha_- = 0.750 \pm 0.009 \pm 0.004$ differs by more than five standard deviations from the world average value of $\alpha_-^{PDG} = 0.642 \pm 0.013$ established in 1978 [9]. However, in our opinion the uncertainty on α_-^{PDG} should be larger since it does not include *e.g.* a systematic uncertainty of at least 5% in the two most precise results [10, 11]. Our value implies that all published measurements on $\Lambda/\bar{\Lambda}$ polarization are $(17 \pm 3)\%$ too large.

2. The $e^+e^- \rightarrow \Lambda \bar{\Lambda}$ process at the continuum ([12] and preliminary)

In a run at $\sqrt{s} = 2.396$ GeV with integrated luminosity of 66.9 pb⁻¹ a data sample of 555 $e^+e^- \rightarrow \Lambda\bar{\Lambda} (\Lambda \rightarrow p\pi^- \text{ and } \bar{\Lambda} \rightarrow \bar{p}\pi^+)$ candidate events was collected. The estimated background is 14 ± 4 . This allows measurement of Λ hyperon form factors, the first complete determination of time-like elastic form factors (EFFs) for any baryon. In the analysis the joint angular distribution given by Eq. (1.1) is used. The helicity non-flip and flip amplitudes are identified with

the electric and magnetic form factors G_E and G_M , respectively. The complete information about the form factors is represented by the Born cross section, the ratio $R = |G_E/G_M|$ and the phase $\Delta \Phi = \arg(G_E/G_M)$. Using the values for the decay asymmetry parameters α_- and α_+ from the BESIII analysis described in Sec. 1 as the input, the obtained values are: $R = 0.96 \pm 0.14 \pm 0.02$ and $\Delta \Phi = (37 \pm 12 \pm 6)^\circ$. The observed non-zero phase is a clear demonstration that the Λ EFFs cannot be described by rational functions of the four-momentum transfer squared [5]. The Born cross section of the process is measured to be $119.0 \pm 5.3 \pm 5.1$ pb.

In a sepatate analysis the Born cross section for the process $e^+e^- \rightarrow \Lambda \bar{\Lambda}$ was measured at $\sqrt{s} = 2.2324$ GeV [12], i.e. 1.0 MeV above threshold, to be $305 \pm 45^{+66}_{-36}$ pb. Such large value is unexpected since for neutral baryons the cross section is not enhanced by the Coulomb factor and should vanish at threshold.

References

- [1] BESIII collaboration, M. Ablikim et al., *Study of J/\psi and \psi*(3686) *decay to* $\Lambda\bar{\Lambda}$ *and* $\Sigma^{0}\bar{\Sigma}^{0}$ *final states, Phys. Rev.* **D95** (2017) 052003.
- [2] BESIII collaboration, M. Ablikim et al., *Polarization and Entanglement in Baryon-Antibaryon Pair Production in Electron-Positron Annihilation*, arXiv:1808.08917.
- [3] L. Kopke and N. Wermes, *J*/ψ Decays, Phys. Rept. **174** (1989) 67.
- [4] N. Cabibbo and R. Gatto, Electron Positron Colliding Beam Experiments, Phys. Rev. 124 (1961) 1577.
- [5] S.J. Brodsky, C.E. Carlson, J.R. Hiller and D.S. Hwang, *Single spin polarization effects and the determination of time like proton form-factors*, *Phys. Rev.* **D69** (2004) 054022.
- [6] G. Fäldt and A. Kupsc, *Hadronic structure functions in the* $e^+e^- \rightarrow \bar{\Lambda}\Lambda$ *reaction, Phys. Lett.* B772 (2017) 16.
- [7] T.D. Lee and C.N. Yang, General Partial Wave Analysis of the Decay of a Hyperon of Spin 1/2, Phys. Rev. 108 (1957) 1645.
- [8] PARTICLE DATA GROUP collaboration, C. Patrignani et al., *Review of Particle Physics, Chin. Phys.* C40 (2016) 100001.
- [9] PARTICLE DATA GROUP collaboration, C. Bricman et al., *Review of Particle Properties. Particle Data Group*, *Phys. Lett.* **75B** (1978) 1.
- [10] O.E. Overseth and R.F. Roth, Time Reversal Invariance in Λ Decay, Phys. Rev. Lett. 19 (1967) 391.
- [11] W.E. Cleland, G. Conforto, G.H. Eaton, H.J. Gerber, M. Reinharz, A. Gautschi et al., A measurement of the β -parameter in the charged nonleptonic decay of the Λ hyperon, Nucl. Phys. B40 (1972) 221.
- [12] BESIII collaboration, M. Ablikim et al., *Observation of a cross-section enhancement near mass* threshold in $e^+e^- \rightarrow \Lambda \overline{\Lambda}$, *Phys. Rev.* **D97** (2018) 032013 [arXiv:1709.10236].