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1. Introduction

Probing the TeV-scale sterile neutrino through the W or Z bosons [1, 2, 3] suffers from the
extremely smalll see-saw Yukawa coupling constants. In some models, other new physics sector
might help enhance the signal. For example, in the ν-Two-Higgs-Doublet-Model (ν-THDM) [4,
5, 6, 7, 8, 9], Ref. [9] had discussed the (mN)& 100 GeV situation when separated objects can be
detected. Secondary vertices are also discussed in Ref. [8].

In this work, we only concern the mN < 100 GeV. When mH±�mN , the highly boosted sterile
neutrino decays via the µ±+jet+jet channel. Fig. 1 shows the complete diagram

Figure 1: Production and subsequent decay channel of the N at the LHC.

2. Model Setup

We briefly show the Lagrangian of the ν-THDM, which is a variant of the type-I Two-Higgs
doublet model [10]. There are two Higgs doublet fields, Φ1,2, with the hypercharge Y = 1

2 . Φ2

couples with the Standard Model (SM) particles QL, uR, dR, LL, eR through

L SM
Yukawa =−Yui jQLiΦ̃2uR j−Ydi jQLiΦ2dR j−Yli jLLiΦ2lR j +h.c.. (2.1)

The Φ1 is in charge of the neutrino,

L ν
Yukawa =−mNNN− (YiLLiΦ̃1N +h.c.), (2.2)

where the subscript i= 1,2,3 corresponds to the e, µ , τ lepton doublets, respectively. In this model,
Yi can be significantly amplified by a sizeable tanβ ≡ v2

v1
, keeping the effective coupling with the

standard-model Higgs boson hSM small.

3. Background Analysis and the Cut Flow

We identify the sterile neutrino jet finding out the high-energy-fraction muons in a jet. For
the SM backgrounds, b-jet might fake the signal through the semi-leptonic decay of a B-meson.
The main irreducible background is therefore pp→ bbl+l−, b→ B+X → µ + ν +X . We also
considered the pp → jb + l+l− and pp → j j + l+l− processes, in which a non-b-jet can also
produce a muon inside.
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We also calculated the important reducible pp→ tt→ bbl+l−+ background. Considering the
MET reconstruction efficiency and the large pile-up effect in the future, we will show both the
results with and without this background, which two extreme cases are covered.

We select the signal events by some anti-mass window around the Z-boson mass, and the mass
window around the H± mass. Then a µ-jet will be identified if it carries more than 30% of the total
jet energy. The events containing at least one tagged N-jet are suffixed by “-1N-jet” and the ones
with two tagged N-jet by “-2N-jet”.

4. Numerical Results
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Figure 2: Minimum ε for
√

2((S+B) ln(1+S/B)−S) = 5. The integrated luminosity is set to 3 ab−1 for a
13 TeV LHC. pp→ tt→ µ+µ−bbνν contributions to the background are not taken into account.
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Figure 3: Minimum ε for
√

2((S+B) ln(1+S/B)−S) = 5. The integrated luminosity is set to 3 ab−1 for a
13 TeV LHC. pp→ tt→ µ+µ−bbνν contributions are included.

In Fig. 2 and Fig. 3, we show the minimum efficiency, ε in the 3 ab−1 integrated luminosity
at the LHC for the “no-tt” and tt cases respectively, required to obtain a 5σ significance. The ε is
defined by multiplying all the branching ratios corresponding to each decay vertex in the process
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shown in Fig. 1. The left panels in the figures shows the “-2N-jet” and the right panels shows the
“-1N-jet” results.

5. Summary

We have simulated the signal and backgrounds at a 13 TeV LHC for the production of a sterile
neutrino with the mass mN < 100 GeV within the framework of a ν-THDM. With the muon-jet
tagging technique, the QCD jet backgrounds have been eliminated and in some regions of the
parameter space, the proposed 3000 ab−1 expected at the HL-LHC can be sensitive to the ε . 0.01
cases. The reducible pp→ tt may be crucial if the pile-up effects will not be improved.[11].
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