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We discuss the spontaneous CP violation in Yang-Mills theory in four dimensions with the gauge

groupSU(N). For this purpose, we investigate Yang-Mills theory onT4 with the gauge group

SU(N)/ZN instead. The finite volume correction in this theory strongly suggests that the free

energy density has a cusp in the range(0,π) of the θ -angle. This then implies the existence of

the same cusp atθ = π in SU(N) theory, indicating the spontaneous CP violation.
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1. Introduction

A quantum field theory may have several different phases. The phase structure usually reflects
non-perturbative aspects of the theory. The knowledge of non-perturbative effects in the theory
may help us understand the phase structure, and vice versa.

Recently, there appeared many researches on the phase structure of quantum field theories.
One example is the study on bosonic Yang-Mills theory in four dimensions with the gauge group
SU(N) [1]. In [1], an important role is played by a recently found tool, the ’t Hooft anomaly
matching for generalized global symmetries [2]. It was argued in [1] that there exists a mixed
anomaly for CP symmetry and the center symmetry, the latter of which is a 1-form symmetry [2].
Based on this anomaly, it is argued that CP symmetry is spontaneously broken atθ = π.

In [3], we gave an alternative argument to the spontaneous CP violation atθ = π in bosonic
Yang-Mills theory claimed in [1]. Our argument is based on the knowledge on confinement in
gauge theories. To show the presence of the spontaneous CP violation inSU(N) theory, we start
our argument withSU(N)/ZN Yang-Mills theory. Since the free energy density ofSU(N)/ZN

theory approaches that ofSU(N) theory in the infinite volume limit, we can say something on
SU(N) theory. We define theSU(N)/ZN theory onT4 with the volumeV, and investigate the
finite volume correctionto the free energy density. As a result, we obtain a strong evidence for the
presence of a cusp of the free energy density atθ = π in the largeV limit, provided that the mass
gap exists. This implies that CP symmetry is spontaneously broken inSU(N) theory.

This paper is organized as follows. In the next section, we review known results on the spon-
taneous CP violation in Yang-Mills theories with the gauge groupSU(N). Then, we explain how
finite volume corrections can be used to show the presence of the spontaneous CP violation in
section 3. In section 4, we investigate the partition function ofSU(N)/ZN Yang-Mills theory on
T4, and extract information on the finite volume corrections from the knowledge on confinement.
Section 5 is devoted to discussion. More details can be found in [3].

2. Spontaneous CP violation

The spontaneous CP violation atθ = π has been already discussed in the literature. In [4, 5],
the bosonic Yang-Mill theory in four dimensions with the gauge groupSU(N) is discussed in the
largeN limit. The action is given as

S =

∫
d4xTr

[
− 1

4g2FµνFµν +
iθ

16π2Fµν F̃µν
]
. (2.1)

In the largeN limit, it is know that the free energyF(θ) scales asN2. Theθ -angle should enter
in the combinationθ/N, just like the gauge coupling constant enters asg2N. Then, the only
contribution ofθ to F which survives in the largeN limit takes the formθ 2. However, it is also
known that the theory is periodic inθ with 2π periodicity. To implement the periodicity,F should
be of the form

F ∝ min
k∈Z

(θ +2πk)2 . (2.2)
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This function has cusps atθ = π mod 2π. At each cusp, the derivative ofF with respect toθ
changes discontinuously. Since∂θ F is given as

∂θ F ∼
⟨
tr(Fµν F̃µν)

⟩
, (2.3)

the discontinuity of∂θ F implies that, atθ = π,
⟨
tr(Fµν F̃µν)

⟩
has two values corresponding to two

vacuum states exchanged by CP symmetry. This implies that CP is spontaneously broken atθ = π.
One might suspect that this is an artifact of the largeN limit. However, it is not the case since

there is another example without the largeN limit [ 6, 7, 8, 9, 1]. ConsiderN = 1 super Yang-
Mills theory in four dimensions. This theory hasN vacua. Let us introduce a small gaugino mass
mwhich breaks the supersymmetry. This induces the potential of the form:

V = −2mµ3e−8π2/(g(µ)2N)+iθ/N +c.c. (2.4)

This potential lifts all but one vacuum except whenθ = π, for which two vacua degenerate. These
two vacua have different values of (2.3), implying again the spontaneous CP violation.

In the following, we will investigate whether a similar phenomenon happens also in the bosonic
Yang-Mills theory in four dimensions with the gauge groupSU(N) for finite N. It should be noted
that the spontaneous CP violation atθ = π can be deduced if one shows that there is a single cusp
of F(θ) in the rangeθ ∈ (0,2π). Indeed, the CP symmetry atθ = 0 and the2π periodicity:

F(−θ) = F(θ), F(θ +2π) = F(θ), (2.5)

imply that the cusp must be atθ = π.

3. Finite volume corrections

Our argument relies on a relation between first-order phase transitions and finite volume cor-
rections. Suppose that the free energy densityF(θ) has a parameterθ , and that it has a cusp at
θ = θ∗. In general, it is quite difficult to confirm the presence of the cusp. To find the cusp, it is
helpful to put the theory in a finite volume. Since any quantity of a theory in a finite volume is
analytic, the cusp in the infinite volume theory is smoothed out. The deviation ofF(θ) from its
infinite volume limit is larger ifθ is closer toθ∗ since the approximation of a non-analytic function
by an analytic function becomes worse in the vicinity of a cusp. Therefore, the growth of the finite
volume corrections is a sign of the presence of a cusp.

Let us make the above argument more quantitative. Consider again the free energy density
F(θ ,V) as a function of theθ -angle and the space-time volumeV. Since∂θ F(θ ,V) is given by a
one-point function (2.3), the finite volume correction is estimated as

∂θ F(θ ,V)−∂θ F(θ ,∞) ∼ e−∆V1/4
, (3.1)

assuming that there is a mass gap∆ > 0 [10, 11]. Integrating this relation, one obtains

g(2π,V)−g(0,V) ∼ e−∆V1/4
(3.2)
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for the finite volume correctiong(θ ,V) := F(θ ,V)−F(θ ,∞) to the free energy density. Note that
we assume the2π periodicity ofF(θ ,∞).

Suppose that the estimate (3.2) is not valid, for example, that the left-hand side decreases much
slower than the exponential asV becomes large. This implies either

1. a cusp exists in the range(0,2π), implying the spontaneous CP violation, or

2. the mass gap vanishes somewhere in the range(0,2π).

In either case, this is a quite interesting and surprising result!

4. SU(N)/ZN theory on T4

In this section, we studySU(N)/ZN Yang-Mills theory onT4 with the volumeV, instead of
SU(N) theory. This is because (i)SU(N)/ZN theory is more tractable thanSU(N) theory, and (ii)
the presence of a phase transition in the former theory implies that of the latter theory.

To explain the reason (ii) more clearly, let us reviewSU(N)/ZN theory in detail. The action
of this theory is the same as (2.1). The gauge group is the quotient groupSU(N)/ZN where the
subgroupZN of SU(N) consists of elements ofSU(N) proportional to the identity element. In
SU(N)/ZN, two SU(N) elements which differ only by an element ofZN are identified.

The SU(N)/ZN theory onT4 can be described in terms of the ordinarySU(N) theory. Due
to the identification inSU(N)/ZN, twisted boundary conditions for the gauge field are allowed
[12, 13, 14]. The partition function ofSU(N)/ZN theory is a sum of the partition functions of
SU(N) theory with all possible twisted boundary conditions:

Z(θ ,V) := ∑
ν∈Z

∑
k,m

Z(k,m,ν ,V)eiθ(ν−k·m/N), (4.1)

whereν is the instanton number, andk,m label the twisted boundary conditions which will be
explained shortly. Since the only differences fromSU(N) theory are the boundary conditions,
certain quantities, for example the free energy density,

F(θ ,V) := − 1
V

logZ(θ ,V), (4.2)

of SU(N)/ZN theory should approach that ofSU(N) theory in the largeV limit. Therefore, if
F(θ ,∞) has a cusp atθ ∈ (0,π), then so is forSU(N) theory.

Now let us investigate the partition function ofSU(N)/ZN theory onT4 in more detail. The
change of the gauge group fromSU(N) to SU(N)/ZN appears in

1
16π2

∫
d4xTr

(
Fµν F̃µν) = ν +

(
N−1

N

)
k ·m, (4.3)

wherek = (k1,k2,k3) andm = (m1,m2,m3) are three-vectors whose entries are integers modulo
N. These vectors label the twisted boundary conditions mentioned above. Note that the right-hand
side takes fractional values. Due to this, the periodicity ofZ(θ ,V) in θ is 2Nπ, not2π.
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Physically, the presence of a non-zerom means that there are “magnetic fluxes” [15, 16]. On
the other hand, a non-zerok does not correspond to “electric fluxes.” The partition function, or the
free energy densityF(e,m,θ ,V) in the presence of electric and magnetic fluxes are instead defined
by a discrete Fourier transformation [15]:

e−VF(e,m,θ ,V) =
1

N3 ∑
ν ,k

e−2π ik·e/N+iθ(ν−k·m/N)Z(k,m,ν ,V). (4.4)

In terms of these free energy densities, the partition function (4.1) can be written as

Z(θ ,V) = N3∑
m

e−VF(0,m,θ ,V). (4.5)

Now we can investigate theθ -dependence of the partition functionZ(θ ,V). The expression
(4.5) shows that there are no electric flux in the sum. From now on, we use the common knowledge
on confinement which can be applied to the caseθ = 0. The magnetic fluxes do not cost the energy
for largeV. In the largeV limit, we find

Z(0,V) ∼ N6. (4.6)

It should be noted that the largeN limit is not taken here. The corrections to the above estimate is
exponentially small inV.

Let us shiftθ by 2π. It is known that the electric fluxes are induced by the Witten effect [17]
if a non-zero magnetic flux exists. Because of the confinement, electric fluxes becomes infinitely
heavy in the largeV limit. Therefore, we obtain

Z(2π,V) = N3∑
m

e−VF(m,m,0,V) ∼ N3. (4.7)

Here, only the sector withm = 0 contributes to the sum. Then, the above results imply

g(2π,V)−g(0,V) ∼ 1
V

logN3. (4.8)

Recall that the left-hand side should be exponentially small inV if a mass gap is present and the
free energy density is analytic inθ . Since we found that the finite volume correction is of order
O(1/V), we conclude that either there is a cusp forF(θ ,∞) in the rangeθ ∈ (0,2π), or the mass
gap disappears at some value ofθ . SinceF(θ ,∞) coincides with the free energy density ofSU(N)

theory onR4, we conclude that there is a phase transition inSU(N) theory atθ = π (recall the
argument at the end of section 2), as long as the mass gap exists.

5. Discussion

We have argued that CP symmetry inSU(N) Yang-Mills theory in four dimensions is spon-
taneously broken atθ = π. This is deduced from the dynamics of the gauge theory: the behavior
of electric and magnetic fluxes in the confinement phase. It would be interesting to extend this
argument to more general theories, for example, Yang-Mills theory coupled to matter fields.

In [3], we also discussed the lattice simulation ofSU(N)/ZN theory onT4, and proposed how
our argument can be verified. We hope to discuss this issue in a future publication.
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