

Measurement of hadronic cross sections at CMD-3

V.L Ivanov^{*a,b}, R.R. Akhmetshin^{a,b}, A.N. Amirkhanov^{a,b}, A.V. Anisenkov^{a,b}, V.M. Aulchenko^{*a,b*}, V.Sh. Banzarov^{*a*}, N.S. Bashtovoy^{*a*}, D.E. Berkaev^{*a,b*}, A.E. Bondar^{*a,b*}, A.V. Bragin^{*a*}, S.I. Eidelman^{*a,b*}, D.A. Epifanov^{*a,b*}, L.B. Epshteyn^{*a,b,c*}, A.L. Erofeev^{*a,b*}, G.V. Fedotovich^{*a,b*}, S.E. Gayazov^{*a,b*}, A.A. Grebenuk^{*a,b*}, S.S. Gribanov^{*a,b*}, D.N. Grigoriev^{*a,b,c*}, F.V. Ignatov^{*a,b*}, S.V. Karpov^{*a*}, V.F. Kazanin^{*a,b*}, I.A. Koop^{*a,b*}, A.N. Kirpotin^{*a*}, A.A. Korobov^{*a,b*}, A.N. Kozyrev^{*a,c*}, E.A. Kozyrev^{*a,b*}, P.P. Krokovny^{*a,b*}, A.E. Kuzmenko^{*a,b*}, A.S. Kuzmin^{*a,b*}, I.B. Logashenko^{*a,b*}, P.A. Lukin^{*a,b*}, K.Yu. Mikhailov^a, V.S. Okhapkin^a, A.V. Otboev^a, Yu.N. Pestov^a, A.S. Popov^{a,b}, G.P. Razuvaev^{*a,b*}, Yu.A. Rogovsky^{*a*}, A.A. Ruban^{*a*}, N.M. Ryskulov^{*a*}, A.E. Ryzhenenkov^{*a,b*}, A.I. Senchenko^{*a*}, Yu.M. Shatunov^{*a*}, P.Yu. Shatunov^{*a*}, V.E. Shebalin^{*a,b*}, D.N. Shemyakin^{*a,b*}, B.A. Shwartz^{*a,b*}, D.B. Shwartz^{*a,b*}, A.L. Sibidanov^{*a,d*}, E.P. Solodov^{*a,b*}, V.M. Titov^{*a*}, A.A. Talyshev^{*a,b*}, A.I. Vorobiov^{*a*}, I.M. Zemlyansky^{*a*}, Yu.V. Yudin^{*a,b*} ^aBudker Institute of Nuclear Physics, SB RAS, Novosibirsk, 630090, Russia ^bNovosibirsk State University, Novosibirsk, 630090, Russia ^cNovosibirsk State Technical University, Novosibirsk, 630092, Russia ^dUniversity of Victoria, Victoria, BC, Canada V8W 3P6

E-mail: V.L.Ivanov@inp.nsk.su

This paper reports a current status of the measurements of the hadronic cross sections in the c.m. energy range from 0.32 to 2.0 GeV with the CMD-3 detector at the VEPP-2000 electron-positron collider. The overall size of the data, acquired by the CMD-3 in the runs of 2010-2013 and 2017-2018 years, is about 160 pb⁻¹. The results of data analysis for various exclusive modes of $e^+e^- \rightarrow hadrons$ are described.

The 39th International Conference on High Energy Physics (ICHEP2018) 4-11 July, 2018 Seoul, Korea

*Speaker.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

The CMD-3 detector [1] at the VEPP-2000 collider [2] in Novosibirsk carries out a comprehensive study of the exclusive cross-sections of $e^+e^- \rightarrow hadrons$ in the c.m. energy range from 0.32 up to 2 GeV. The CMD-3 results provide an important input for calculation of the hadronic contribution to the muon anomalous magnetic moment (AMM). The VEPP-2000 energy range gives the major hadronic contribution to AMM, both to the hadronic vacuum polarization itself (~ 92%) and to its uncertainty [3]. In this report we present the overview of the results of CMD-3 data analysis, including various modes of electron-positron annihilation with up to six pions or two kaons and pions in the final state.

Up to now, the CMD-3 collected about 160 pb⁻¹ of data in the runs of 2010-2013 and 2017-208 years, with ~70 pb⁻¹ at $\sqrt{s} < 1.0$ GeV (including $\omega(782)$ region scan); ~8.4 pb⁻¹ at $\phi(1020)$ meson region; ~85 pb⁻¹ at $\sqrt{s} > 1.04$ GeV, including 14 pb⁻¹ of data at nucleon-antinucleon production threshold region. Starting from 2013 the beam energy was determined using the Compton backscattering technique with accuracy ~ 50 keV [4]. The peak collider luminosity was ~ $3 \cdot 10^{31}$ cm⁻²s⁻¹. The integral luminosity was determined with 1% systematic uncertainty using the events of Bhabha scattering, and, for cross-check, the $e^+e^- \rightarrow \gamma\gamma$ events [5].

2. Pion Form Factor Measurement

One of the main goals of the CMD-3 is to reduce a systematic uncertainty of the cross section of two-pion production to the level smaller than 0.5%, which corresponds to ~0.35 ppm uncertainty in the AMM. The data sample, collected by CMD-3 in 2011-2013 at $\sqrt{s} < 1.0$ GeV is at the level of BaBar, KLOE and BES statistics, whereas 2-3 times more data have been collected in this region in 2017-2018. To control the systematic uncertainty, the $\pi^+\pi^-$ events selection is performed using two independet methods - using particles momenta or their energy deposition in the calorimeter. In both cases 2-dimensional binned likelyhood function maximization is performed to obtain the ratio of numbers of $\pi^+\pi^-$ and e^+e^- events. Currently the systematic uncertainty for pion form factor is estimated to be 0.4-0.9% (momentum-based approach) and 1.5% (energy-based).

3. Study of the Process $e^+e^- \rightarrow 3(\pi^+\pi^-)$

Production of six pions in e^+e^- annihilation was studied at DM2 [6] and BaBar [7]. The DM2 experiment observed a "sharp behavior" of the cross section of this process near nucleonantinucleon threshold, confirmed later by the BaBar. The origin of this phenomenon remains unclear, see theoretical papers [8], [9], [10]. The cross section, measured with the CMD-3, is shown in Fig. 1. The final results for the data of 2011-2012 years were published in [11].

4. Study of the Process $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$

CMD-3 performed the first measurement of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$ process cross section in the c.m. energy range from 1.394 to 2.005 GeV. The $\eta \rightarrow \gamma\gamma$ decay mode is used, and the total number of selected events was found to be 2769±95. The obtained Born cross section is shown in Fig. 2.

The systematic uncertainty was estimated as 15%. The main intermediate states for the studied process were found to be $\omega(782)\eta$, $\phi(1020)\eta$, and $a_0(980)\rho(770)$, the cross sections of their production also were extracted, final results are published in [12].

5. Study of the Process $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$

We observed several intermediate mechanisms of $K^+K^-\pi^+\pi^-$ production $(f_0(500)\phi(1020), f_0(980)\phi(1020), \rho(770)KK, K_1(1270, 1400)K \rightarrow K^*(892)\pi K, K_1(1400)K \rightarrow \rho(770)KK)$, and unbinned fit was used to adjust the simulation to the data. The final results for the cross section measurement on the base of 2011-2012 statistics were published in [14]. Hovewer, the 3 times larger data sample, collected in 2017, revealed the indication on the drop of the process cross section at the nucleon-antinucleon threshold, see Fig. 3, similar to that in the $3(\pi^+\pi^-)$ final state.

6. Study of the Prosess $e^+e^- \rightarrow p\bar{p}$

The results for the $e^+e^- \rightarrow p\bar{p}$ cross section and G_E/G_M ratio near threshold on the base of 2011-2012 years were published in [15]. In 2017 a thorough $p\bar{p}$ production threshold scan was performed, see the preliminary results for $p\bar{p}$ production cross section in Fig. 4. The fitting curve, taken from the theoretical works [9] and [10], shows a good agreement with data.

Figure 1: The $e^+e^- \rightarrow 3(\pi^+\pi^-)$ cross section, measured by the CMD-3 in the 2017 runs (red), in 2011-2012 (black), and by BaBar (green). The inset shows the visible cross section with the fit. The lines show nucleon-antinucleon thresholds.

Figure 2: The $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$ cross section, measured by CMD-3 (black -2011 runs, blue - 2012 runs).

7. Summary and Conclusion

The VEPP-2000 e^+e^- collider, CMD-3 and SND detectors successfully operate to collect $\sim 1 \ fb^{-1}$ of data in the next 5-10 years. The collected data sample of 160 pb⁻¹ is enough to provide the results with competitive precision compared to previous experiments.

Figure 3: The $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$ cross section, measured by the CMD-3 in the 2017 runs (red), and by BaBar (greeb). The inset shows the visible cross section with the fit. The lines show nucleon-antinucleon thresholds.

Figure 4: The $e^+e^- \rightarrow p\bar{p}$ cross section, measured by the CMD-3 in the 2017 runs (red, preliminary), in 2011-2012 (black), and by BaBar (green). The inset shows the visible cross section (CMD-3, 2017) with the fit. The lines show nucleon-antinucleon thresholds.

8. Acknowledgements

Part of this work related to the photon reconstruction algorithm in the electromagnetic calorimeter is supported by the Russian Science Foundation (project #14-50-00080). The work is partially supported by the Russian Foundation for Basic Research grants RFBR 15-02-05674-a, 16-02-00160-a, RFBR 17-02-00897, RFBR 17-02-00847, 17-02-00327-a, 17-52-50064-a and 18-32-01020.

References

- [1] B.I.Khazin et al., Nucl. Phys .B, Proc. Suppl. 376(2008) 181.
- [2] I.A.Koop et al., Nucl. Phys. B, Proc.Suppl. 371 (2008) 263.
- [3] M.Davier et al., EPJ C **31** (2003) 503.
- [4] E.V.Abakumova et al., Phys. Rev. Lett. 110 (2013) 140402.
- [5] A.E. Ryzhenenkov et al. JINST 12 (2017) C07040.
- [6] R.Baldini et al., reported at the Fenice Workshop, Frascati (1988).
- [7] B.Aubert, et al., Phys. Rev. D. 76, 092005 (2007).
- [8] A.Sibirtsev and J. Haidenbauer, Phys. Rev.D 71, 054010 (2005).
- [9] V. F. Dmitriev, A. I. Milstein and S. G. Salnikov, Phys. Rev. D 93, 034033 201 (2016).
- [10] A.I. Milstein and S.G. Salnikov, Nuclear Phys. A 977 (2018) 60-68.
- [11] R. R. Akhmetshin et al., Phys. Lett. B723, 82 (2013).
- [12] R. R. Akhmetshin et al., Phys. Lett. B773, 150-158 (2017).
- [13] D.N.Shemyakin et al., Phys. Lett. B756 (2016) 153.
- [14] R. R. Akhmetshin et al., Phys. Lett. B759 (2016) 634.