

Study of productions of $K_S^0 K_S^0$ (single-tag) and $\eta' \pi^+ \pi^-$ (no-tag) in two-photon collisions

Qingnian Xu^{*†}

Institute of High Energy Physics, Chinese Academy of Siceces University of Chinese Academy of Sciences E-mail: xuqingnian10@mails.ucas.ac.cn

A measurement of the cross section for K_S^0 pair production in single-tag two-photon collisions, $\gamma^* \gamma \rightarrow K_S^0 K_S^0$, for Q^2 up to 30 GeV² is reported. Here Q^2 is the negative of the invariant mass squared of the tagged photon. For the first time, the transition form factor of the $f'_2(1525)$ meson is measured separately for the helicity-0, -1, and -2 components and compared with theoretical calculations. The $\gamma^* \gamma$ partial decay widths of the χ_{c0} and χ_{c2} charmonia are measured as a function of Q^2 . The measurements of $\gamma\gamma \rightarrow \eta_c(1S)$, $\eta_c(2S) \rightarrow \eta' \pi^+ \pi^-$ with η' decays to $\gamma\rho$ and $\eta \pi^+ \pi^$ are reported as well. First observation of $\eta_c(2S) \rightarrow \eta' \pi^+ \pi^-$ with a significance 5.5 σ including systematic error is obtained. The products of the two-photon decay width and branching fraction of decays to $\eta' \pi^+ \pi^-$ are determined for the $\eta_c(1S)$ and $\eta_c(2S)$, respectively. The cross section for $\gamma\gamma \rightarrow \eta' \pi^+ \pi^-$ and $\eta' f_2(1270)$) are measured for the first time. These results for the $K_S^0 K_S^0$ $(\eta' \pi^+ \pi^-)$ production are based on the data sample of 759 fb⁻¹ (941 fb⁻¹) collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider.

39th International Conference on High Energy Physics 4-11 July, 2018 Seoul, Korea

*Speaker. [†]On behalf of the Belle Collaboration.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

A Q^2 dependence of the transition form factor (TFF) of a meson produced by a formation process from two-photon fusion can be measured in the single-tag two-photon processes, where either photon is highly virtual and the other photon regarded as (quasi-) real. The measurements of TFF or the $\gamma^* \gamma$ cross sections are applied for studies of QCD based on models of $q\bar{q}$ mesons [1] and exotic hadrons, and hadron tomography through an extraction of generalized distribution amplitude (GDA)[2]. In addition, the size of the cross sections can be a reference of the Light-by-Light hadronic contribution which is used in a theoretical evaluation of the anomalous magnetic moment of the muon (g-2) [3].

Precise measurement of the $\eta_c(1S)$ and $\eta_c(2S)$ two-photon decay widths may provide sensitive tests for QCD models [4]. CLEO made the first measurement of the $\eta_c(2S)$ two-photon decay width $\Gamma_{\gamma\gamma}$ via $K_S^0 K^+ \pi^-$ but observed no signal for the $\eta_c(2S) \rightarrow \eta' \pi^+ \pi^-$ decay [5]. The cross sections for two-photon production of meson pairs have been predicted in the leading term QCD calculation [6] and the handbag model [7], and measured in the experiments by Belle [8]. There is no specific QCD prediction for the two-photon production of either the pseudoscalar-tensor meson pair $\eta' f_2(1270)$ or the three-body final state $\eta' \pi^+ \pi^-$.

The measurements are performed using the Belle detector [9] at the asymmetric e^+e^- collider KEKB [10]. The collision data collected at e^+e^- c.m. energies near the $\Upsilon(4S)$ mass (10.6 GeV), 60 MeV below it, and the $\Upsilon(5S)$ mass (10.9 GeV) are used.

2. Study of $\gamma^* \gamma \rightarrow K_s^0 K_s^0$

The $\gamma^*\gamma$ -based cross section as a function of W for five Q^2 regions from 3 GeV² to 30 GeV², in W region below 2.6 GeV, is derived and shown in Figure 1. We find the cross section has peaks near the threshold and the mass of $f'_2(1525)$, but no significant enhancement in the $f_2(1270)/a_2(1320)$ region. The cross section gradually decreases according to Q^2 .

Because the peaks from the χ_{c0} and χ_{c2} charmonia are as narrow as the mass resolution of the detector, we evaluate the peak yields with the product of the two-photon decay width $\Gamma_{\gamma^*\gamma}$ and the branching fraction to the final state, instead of the *W* dependence of the cross section. The experimental results are plotted as a function of Q^2 in Fig. 2 as a ratio to the corresponding zero-tag measurement (at $Q^2 = 0$).

We have performed a partial-wave analysis to obtain the TFF of $f'_2(1525)$. The obtained Q^2 dependences of the $f'_2(1525)$ TFFs are plotted in Fig. 3. The curves are the theoretical prediction [1]. They show good agreement for the helicity-0 and -2 states. As for the helicity-1, the prediction is slightly larger, but is not inconsistent.

3. Study of $\gamma\gamma \rightarrow \eta'\pi^+\pi^-$

The fit results for the $\eta_c(1S)$ and $\eta_c(2S)$) signals are shown in Fig. 4. The products of the two-photon decay width and branching fraction (*B*) of decays to $\eta' \pi^+ \pi^-$ are determined to be $\Gamma_{\gamma\gamma}B(\eta_c(1S)) = [65.4 \pm 2.6 \text{ (stat)} \pm 6.9 \text{ (syst)}] \text{ eV}$ and $\Gamma_{\gamma\gamma}B(\eta_c(2S)) = [5.6^{+1.2}_{-1.1} \text{ (stat)} \pm 1.1 \text{ (syst)}] \text{ eV}.$

 $K_s^0 K_s^0$ as a function of W for the five Q^2 regions whose width of χ_{c0} (left) and χ_{c2} (right) normalized by that central value is shown in the subpanel.

Figure 1: The $\gamma^* \gamma$ based total cross section for $\gamma^* \gamma \rightarrow$ **Figure 2:** Q^2 dependence of the two-photon decay for $Q^2 = 0$. Refer to the paper [11].

Figure 3: TFFs for the three helicity states of the $f'_2(1525)$ from the present measurement. The gray band shows the normalization error. The curves are from a theoretical prediction [1].

An enhancement near 1960 MeV/ c^2 is observed in the $\eta_c(1S)$ signal window, but no such excess is seen in the $\eta_c(1S)$ sideband region. We label it the $f_0(2080)$, with mass and spin to be given in study. The fit results for the $f_0(980)$, $f_2(1270)$ and $f_0(2080)$ components are shown in Fig. 5 (a), where the $M_{\pi^+\pi^-}$ distribution is filled with the fitted $\eta_c(1S)$ bin-by-bin yields including the $\eta_c(1S)$ decays to both two-body and three-body final states. Figure 5 (b) shows the distribution of $\cos\theta_{\text{hel}}$ for the $f_0(2080)$ candidate events, which are extracted by fitting the $f_0(2080)$ signal in each angular bin, together with MC expectations for $J^{PC} = 0^{++}$ and 2^{++} .

We utilize the data sample selected in the $\eta' \rightarrow \eta \pi^+ \pi^-$ mode to measure the non-resonant production of $\eta' \pi^+ \pi^-$ final states via two-photon collisions. The W-dependent cross sections of the production processes $\gamma\gamma \rightarrow \eta' f_2(1270)$ and $\gamma\gamma \rightarrow \eta' \pi^+ \pi^-$ after subtraction of the $\eta' f_2(1270)$ contribution are measured. The measured differential cross sections in $|\cos\theta^*|$ for $\gamma\gamma \rightarrow \eta' f_2(1270)$ show an ascending trend, and its rate of increase is greater in the larger W ranges.

4. summary

For the first time, we find production of the $f'_2(1525)$, $\chi_{c0}(1)$, and $\chi_{c2}(1P)$ mesons in high- Q^2 $\gamma^*\gamma$ scattering[11]. We have measured the χ_{c0} and χ_{c2} partial decay widths $\Gamma_{\gamma^*\gamma}$ as a function of Q^2 , as well as the total cross section near the $K_S^0 K_S^0$ mass threshold. A partial-wave analysis has been conducted, and the helicity-0, -1, and -2 transition form factors (TFFs) of the $f_2(1525)$ meson are measured. The Q^2 dependence of the above resonances and structures are compared with the

Figure 5: The fit results for the $f_0(980)$, $f_2(1270)$ and $f_0(2080)$ (a) and the distribution of the cosine of helicity angle θ_{hel} for the $f_0(2080)$ candidate events (b). See the paper [12] in details.

Figure 4: The invariant mass distribution for the $\eta' \pi^+ \pi^-$ candidates for (a) [(c)] the $\eta \pi \pi$ mode and (b) [(d)] the $\gamma \rho$ mode, in the $\eta_c(1S)$ [$\eta_c(2S)$] region.

 $q\bar{q}$ -meson model predictions [1], and the comparisons show that they are not inconsistent for all of them.

The $\eta_c(1S)$, $\eta_c(2S)$ and non-resonant $\eta' \pi^+ \pi^-$ production via two-photon collisions is measured [12]. We report the first observations of the signals for $\eta_c(1S)$ decays to $\eta' f_0(2080)$ with $f_0(2080) \rightarrow \pi^+ \pi^-$ and $\eta_c(2S)$ decays to $\eta' \pi^+ \pi^-$, the measured products of the two-photon decay width and the branching fraction for the $\eta_c(1S)$ and $\eta_c(2S)$ decays to $\eta' \pi^+ \pi^-$, and the measurement of non-resonant production of two-body $\eta' f_2(1270)$ and three-body $\eta' \pi^+ \pi^-$ final states via two-photon collisions.

References

- [1] G. A. Schuler, F. A. Berends, and R. van Gulik, Nucl. Phys. B 523, 423 (1998).
- [2] S. Kumano, Qin-Tao Song, and O.V. Teryaev, Phys. Rev. D 97, 014020 (2018).
- [3] G. Colangelo, M. Hoferichter, B. Kubis, M. Procura and P. Stoffer, Phys. Lett. B 738, 6 (2014).
- [4] J. P. Lansberg and T. N. Pham, Phys. Rev. D 74, 034001 (2006); N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005).
- [5] D.M. Asner et al. (CLEO Collaboration), Phys. Rev. Lett. 92, 142001 (2004).
- [6] M. Benayoun and V. L. Chernyak, Nucl. Phys. B329, 285 (1990).
- [7] M. Diehl, P. Kroll and C. Vogt, Phys. Lett. B 532, 99(2002).
- [8] A.J. Bevan, B. Golob, Th. Mannel, S. Prell and B.D. Yabsley, Eds., Eur. Phys. Jour. C 74, 3026 (2014).
- [9] J. Brodzicka et al. (Belle Collaboration), Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
- [10] T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A003 (2013).
- [11] M. Masuda et al. (Belle Collaboration), Phys. Rev. D 97, 052003 (2018).
- [12] Q. N. Xu et al. (Belle Collaboration), arXiv:1805.03044[hep-ex] (2018).