Higgs physics at CLIC
M.A. Weber* and
On behalf of the CLICdp collaboration*: corresponding author
Published on:
August 02, 2019
Abstract
The Compact Linear Collider (CLIC) is a mature option for a future electron-positron collider operating at centre-of-mass energies of up to 3 TeV. CLIC will be built and operated in a staged approach with three centre-of-mass energy stages currently assumed to be 380 GeV, 1.5 TeV and 3 TeV. This contribution discusses the physics potential of CLIC in the area of Higgs physics based on benchmark analyses using full detector simulations. The initial stage of operation allows study of Higgs production in Higgsstrahlung and WW-fusion, resulting in precise measurements of the production cross sections and the total Higgs-boson decay width. Operation at high energy will provide high-statistics samples of Higgs bosons produced in WW-fusion enabling tight constraints on Higgs couplings. High-energy operation also gives access to the $\mathrm{t\bar{t}H}$ process and Higgs self-coupling, through the measurement of double Higgs production. Global fits of the CLIC Higgs analyses are presented.
DOI: https://doi.org/10.22323/1.340.0682
How to cite
Metadata are provided both in
article format (very
similar to INSPIRE)
as this helps creating very compact bibliographies which
can be beneficial to authors and readers, and in
proceeding format which
is more detailed and complete.