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The nature of computing is changing.  Driven by the solid state physics of CPU technology, 
industry is moving to multi-core systems with less memory, power, and memory bandwidth per 
core.  The result is that the pleasantly parallel HEP event processing paradigm has to adjust to this 
new reality.  New techniques such as machine learning and algorithms capable of exploiting 
vector processors, will be needed.  Advances in instrumentation enabling fine-granularity high-
precision measurements, have driven a data revolution.  In this paper I will capture the needs, and 
where we are in addressing these data and compute challenges. 
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1.Introduction 
 
HEP experiments have long been at the leading edge of data movement and storage 

technologies.  While it was challenging to think that we needed a Petabyte store of data to do 
analysis of Tevatron data in 2005, the experiment did reach that scale at about that time.  No other 
field needed that.  Fast forward 13 years later and many sciences and commercial service 
providers need 100 times this scale.  In addition, in 2005 the data could be made available at a 
central facility like Fermilab.  Today, it must be stored at data centers around the world.  The 
number of participants and their growing data and compute requirements now make 
this impractical to do in any other way.  

Computing must become a community activity driven by a goal to extract as much science 
as possible from computing facility investments made at laboratories and universities around the 
world. Thankfully, technological advances in networking and storage have evolved to meet the 
challenges created by the large scale instruments and scientific programs of the current era. 

2.  A Data Centric Vision for the Future 
 
HL-LHC, SKA, DUNE, LIGO, LSST are or will all be data intensive science 

experiments.  While we know their computing challenges are equally large, others, outside of 
HEP are planning to build exascale compute.  An exascale computer is one capable of at least one 
thousand petaflops, or 10 to the 18th floating point operations per second.  The US, China, Japan, 
and European HPC communities have plans to reach exascale computing by 2023.  Building 
exascale data facilities is a challenge the experimental science community will have to drive for 
itself.   

There are two visions currently competing for resources.  One is to concentrate computing 
power into highly power-efficient exascale facilities.  The other is to use a large number of more 
conventional facilities connected by high performance networking, all feeding from a data 
ocean.  I do not believe this is an either or proposition for HEP; we will need both. As discussed 
in a white paper authored by an international group of high performance computing (HPC) 
experts, [1] a combination of HPC and high data analytics (what we call high throughput 
computing, HTC) are needed in the different phases of uncovering scientific insight.  Combining 
HPC and  HTC applications and methods in large-scale workflows that orchestrate simulations or 
incorporate them into the stages of large-scale analysis pipelines for data generated by 
simulations, experiments or observations is what we will need to do as we drive for a more precise 
understanding of the standard model. 
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2.1 A  Sampling of Data Needs 

International science requires international data movement and storage.  The LHC 
computing grid is both an example and a foundation on which to build an exascale data 
facility.  This will be an expensive enterprise meaning it will have to be shared with all of the 
international data intensive sciences.  This trend has already started with both DUNE and Bell II 
using LHC networks and co-located computing facilities. 

In  order to get a sense of the scale of needs, I’d like to sample from a number of experiments 
in particle and astro-particle physics planned to be in operation in the mid-2020s.  CMS and 
ATLAS project that in order to support the number of existing collaborators with data formats 
similar to the ones in use today they will need 5 exabytes of disk storage each.  Work is ongoing 
to reduce the size of data analysis formats while maintaining their usefulness for physics analysis. 
However, no matter what, the raw data from the HL-LHC will need to be stored and archived.  In 
2026 that is projected to require 600PB per year. 

One of the major neutrino experiments operating on that time scale is DUNE.  DUNE has 
the capability of generating an impossibly large amount of data.  If all channels are completely 
read out (no zero suppression), at the full rate of the DAQ bandwidth limit, continuously over a 
year, DUNE would collect 150exabytes / year.  Fortunately that level of detail for the full detector 
is only need for recording super nova events.  Suppression of 39Ar decay, cold electronics noise, 
space charge effects, and argon impurities in these new liquid Ar TPC detectors, need to be studied 
and understood well enough to allow for effective zero suppression strategies in the readout.  The 
target for DUNE is to produce 30PB per year. 

LSST will conduct a deep survey with a frequency that results in taking repeat images of 
every part of the sky every few nights in multiple bands for ten years.  They plan on collecting 
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50PB per year.  SKA is a software telescope operating in complementary bans of the 
electromagnetic spectrum.  It plans to collect 300PB per year. 

 

 
 
The above figure summarizes these data needs projections, and compares them to the Google 

and Facebook yearly data volumes in 2018.  Providing software and computing capable of 
extracting science from these unprecedentedly large data sets is a large challenge for the data 
science community.  It would not be possible to do this with the technologies we have in use 
today.  Therefor a focused R&D plan investigating and incorporating new technologies, is needed 
in order to effectively carry out improvements, over the next few years, to meet this challenge. 

3.  A  Community Challenge and Response 
 

In January of 2017 the Hep Software Foundation organized a kickoff workshop to seed 
the creation of a software and computing plan for the coming decade.  A series of following 
workshops were used to get community buy-in, and authorship participation in, a white paper 
document [2]. It was released in December of 2017.  Inspired by the P5 process [3] and guided 
by its goals, the scientific software and computing community white paper (CWP) provides a 
roadmap to extend commonality to a broader set of software.  It is a 70 page document containing 
13 topical sections summarizing R&D in a variety of technical areas for HEP Software and 
Computing.  Almost all major domains of HEP Software and Computing are covered including 
one section on Training and Careers. With 310 signatories from 124 HEP-related institutions, it 
represents a broadly representative community view. 

As presented at the conference, I will detail a subset of these 13 topics that are of most 
interest to the ICHEP audience.  These are the areas that require HEP domain specific knowledge 
to effectively contribute to. 

 
3.1 Simulation 
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Simulating our detectors today consumes huge computing resources in both the energy 
and intensity frontiers.  Atlas uses 300,000 cores, CMS 200,000 cores continuously mostly for the 
creation of simulation datasets.  

Simulation is an area in which we already have an engine and related community tools, 
the Geant family of tools, and Geometry modelers.  The simulation chapter of the CWP makes 
the case that the best strategy is one in which Geant4 remains the workhorse that advances in 
GeantV can be back ported to, including an option to use the vectorized transport engine if that 
R&D demonstrates significant advantage over the default engine.  G4 needs continued investment 
in physics and technical performance, that is continually validated by the experiments.  This can 
only be done with an evolutionary approach.  Therefor the main R&D topics identified covers 
(also where applicable I have added references to talks at ICHEP2018 where people have 
presented early results on these topics): 

1. In adapting to new computing architectures can a vectorized transport engine actually 
work in a realistic prototype? How painful would evolution be (re-integration into 
Geant4)?  Are there other strategies for improving technical performance on emerging 
computing architectures e.g. Single Instruction Multiple Data (SIMD) vectorization, 
Non-uniform Memory Access (NUMA) hierarchies, and offloading to accelerators 
like, Graphic Processing Unit (GPU), Field Programmable Gate Array (FPGA), and 
Tensor Processing Unit (TPU)? 

2. Will experiments adopt common solutions for detector geometry descriptions that 
service the needs of simulation and experiment reconstruction, as was the goal of the 
DD4hep project? 

3. Will machine learning play a new role in the domain of fast simulation? Can we 
develop a common toolkit for tuning and validation of fast simulation? [4] [5] 

4. Review the physics models assumptions, approximations and limitations of the sim-
ulation engine.  Can the validity of these models be evolved to achieve higher preci-
sion, and extended up to FCC energies? [6] 

5. Can we share techniques for background modeling, including contributions of mul-
tiple hard interactions overlapping the event of interest (data overlay, ML)  

6. Can we explore opportunities for code sharing among experiments when sharing the 
same experiments are sharing readout electronics?  Can we re-engineer digitization 
algorithms to improve performance by means of vectorization and sub-system 
parallelization techniques? 

The CWP brought a more consistent view and work-plan among the different projects and 
experiments. 

 
3.2 Software Triggers and Reconstruction 
 
 Whether it is reconstructing the simulated data or the detector data, reconstruction will be 
the most expensive processing step for many experiments operating 10 years from now.  The 
reason for this change is that the complexity of the events is increasing or the highly granular 
nature of the newly designed detectors is increasing or both. 
 Moving offline software reconstruction into trigger farms is already a key part of the 
program for LHCb and ALICE in Run 3. ‘Real time analysis’ increases signal rates and can make 
computing more efficient in terms of storage and CPU.  The main R&D topics identified by this 
working group are the following: 
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1. Can we control charged particle tracking resource consumption and maintaining 
current phyics performance? 

2. Do current algorithms' physics output hold up at pile-up of 200 (or 1000)? 
3. Can tracking maintain low pT sensitivity within budget? 
4. Detector design itself be a big impact [7]. How much will be gained in necessary 

speed improvements by optimizing tracker layouts, and the use of timing detectors? 
5. Can we improve our validation techniques by using modern continuous integration, 

multiple architectures (which introduce sources of non-bit-for-bit reproducibility 
which are stochastically insignificant) validation within reasonable turnaround times?  

6. Is it possible to use common reconstruction toolkits such as ACTS [8], TrickTrack 
[9], and Matriplex [10] and adapt them to experiment specificities in a later step?  
This would allow for the sharing of rare expertise across the field if possible.  

In addition to the above, just as with the simulation, the current generation of reconstruction 
software will need to be adapted to the newly available architectures listed in bullet one of the 
previous section. 
 
3.3 Machine Learning 
 
 Neural networks and Boosted Decision Trees have been used in HEP for a long time, in 
for example, particle identification algorithms.  In this conference, there was an entire session 
dedicated to presenting results of exploratory R&D aimed at expanding the use of deep neural 
networks (DNNs) in our field.  These ten talks covered uses in data quality monitoring, simulation, 
and reconstruction applications, in addition to the traditional analysis applications. 
 DNNs are very good at dealing with noisy data and huge parameter spaces.  This has 
driven research into the use of this tool for these applications: 

1. Speeding up computationally intensive pieces of our workflows  
2. Enhancing physics reach with better classification than our current techniques 
3. Improving data compression by learning and retaining only salient features 
4. Anomaly detection for detector and computing operations 

Machine Intelligence has become a big industry, and commercial companies have developed open 
source tools that are accelerating HEP adoption trends.  There is a Python software ecosystem 
developing around this high risk but high reword research.  If successful, this technology will 
change the way we do software and computing in the field. 
 
3.4 Quantum Computing 
 
 Almost 40 years ago, Richard Feynman was one of the originators of the idea of building 
a quantum computer.  He said, “Nature isn’t classical … and if you want to make a simulation of 
Nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because 
it doesn’t look so easy.”  Our field has made great use of perturbation theory, but as we require 
higher and higher orders of these calculations, they become computationally expensive.  As 
experiments become more precise, the theory must also.  However it is an unanswered question 
as to how much we need to spend on classical computers to attain adequate descriptions and 
predications of quantum field theories.  Lattice quantum chromodynamics is an alternative 
approach to perturbative methods; however it is computationally expensive as well. 
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 Over the next 10 years there will be intense R&D into quantum devices to enable general 
purpose quantum computing which promise the capability of easily solving problems that are hard 
to solve on classical computers.  In the meantime there is a field of work that tries to take 
advantage of the mid-scale noisy sensors available today.  This is the area of quantum algorithm 
development which has shown applicability to the problems of optimization, and machine 
learning in addition to quantum simulation.  An example of such work is the development of a 
digital quantum computation of fermion boson interacting systems which are accurate and simple 
enough to use on near term hardware available on cloud platforms today.  A first application was 
to simulate polarons; electron dressed by phonons [8]. 

4. Summary and Outlook 
 
 Stephen Hawking once said, “Intelligence is the ability to adapt to change”.  The 
only thing certain about computing in the next decade is that it will change.  Our software 
needs to be modernized to fully benefit from new computing architectures, and new 
approaches like ML need to be adapted to our problems.  
 As seen by the large participation in the detector track of ICHEP18, there is a lot 
of innovation and intellectual effort going into detector design.  Computing needs to be 
seen as the extension of these efforts necessary to extract the science, and is deserving of 
equal effort, side by side with the design of the detectors.  Especially as detector designs 
have a large influence on computational complexity. 
 The data and compute challenges of the next decade are large, even daunting.  In 
order to satisfy the scientific needs of our community, we will need to build 
unprecedented scientific facilities and capabilities.  The scientific harvest that is possible 
with this new era of big data science, and exascale computing is extremely compelling. 
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