PoS - Proceedings of Science
Volume 341 - The 20th International Workshop on Neutrinos (NuFACT2018) - Wg 2
Optical Potential and Removal Energies in Lepton Nucleus Scattering
A. Bodek* and T. Cai
Full text: pdf
Pre-published on: November 18, 2019
Published on: December 12, 2019
Abstract
We summarize some of the results presented in arXiv:1801.07975 [nucl-th]\cite{FSIpaper}(to be published in EPJC in 2018) on modeling
electron and neutrino QE scattering on a variety of nuclei within the impulse approximation. We find that with three parameters we can describe the final state lepton energy for all of available electron QE data on Lithium, Carbon+Oxygen, Aluminum, Calcium+Argon, Iron and Lead+Gold. The first parameter, the removal energy $\epsilon^{P,N}$ is extracted from exclusive ee$^{\prime}$p spectral function data. The second parameter $V_{eff}$, which accounts for the interaction of final state leptons and protons with the Coulomb potential of the nucleus, is available from published comparisons of inclusive QE electron and positron cross section. We extract the third parameter $U_{FSI}(\vec {q}_3^2)$, which accounts for the interaction of the final state nucleon with the optical potential of the spectator nucleus (FSI), by fitting all available inclusive QE cross sections on nuclear targets. Here $q_3$ is the three momentum transfer. With these three parameters we can model the energy of final state electrons and nucleons for all available electron QE scattering data. At present the uncertainty in the value of the removal energy parameters is a the largest source of systematic error in the extraction of the neutrino oscillation parameter $\Delta{m}^2$. The use of the updated parameters in neutrino Monte Carlo generators reduces the systematic uncertainty in the combined removal energy (with FSI corrections) from $\pm$ 20 MeV to $\pm$ 5 MeV. In this short contribution we only summarize the results for Carbon+Oxygen and Calcium+Argon
DOI: https://doi.org/10.22323/1.341.0094
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.