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We have performed the first Bayesian neural-network analysis of neutrino-deuteron scattering
data [1]. The nucleon axial form factor has been extracted from quasielastic scattering data col-
lected by the Argonne National Laboratory (ANL) bubble chamber experiment using a model-
independent parametrization. The results are in agreement with previous determinations only
when the low 0.05 < Q2 < 0.10 GeV2 region is excluded from the analysis. This suggests that
corrections from the deuteron structure may play a crucial role at low Q2, although experimental
errors in this kinematic region could have also been underestimated. With new and more precise
measurements of neutrino-induced quasielastic scattering on hydrogen and deuterium, the present
framework would be readily applicable to unravel the axial structure of the nucleon.
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1. Introduction

A deep understanding of neutrino interactions with matter is crucial for oscillations exper-
iments aiming at the determination of neutrino properties. To reach the goals of precision and
accuracy desired, a realistic modeling of neutrino interactions with nuclei is required. The nucleon
axial form factor, FA, is a source of uncertainty in the amplitudes and therefore in the cross sec-
tions, which are the key ingredient of the interaction models. The axial form factor is a fundamental
property of the nucleon and is a function of the momentum transferred in the interaction,−Q2. The
most common parametrization used in the literature is the dipole ansatz which depends only on a
single parameter, MA, and is not theoretically well founded.

Bubble chamber experiments of neutrino scattering on deuterium collected a data set for the
quasielastic process, from which FA can be extracted. For this purpose we have performed a semi-
parametric analysis and obtained model-independent information about FA from the ANL experi-
mental data [2, 3, 4]. For the analysis we have used feed-forward neural networks in a multilayer
perceptron (MLP) configuration [5]. The tool that allows us to choose between all the different
results given by the neural networks is Bayesian statistics [6]. This framework has been applied to
the extraction of electromagnetic form factor from electron scattering data [7].

2. Numerical results and summary

It is known that the low-Q2 data are characterized by a lower efficiency (see for instance Fig. 1
of ref. [4]). Moreover, in this kinematic domain deuteron structure corrections must be carefully
taken into account. In order to study this problem we have considered three variants of the ANL
data: including all the bins (BIN0) and without the first k bins (BINk), where k = 1 or k = 2.
Additionally, for each data set we considered the cross section model with and without deuteron
corrections, for which we use the calculation of Ref. [8] (solid line of Fig. 4 in this reference).
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Figure 1: Best fits obtained for
MLPs with M = 1−4 hidden units
in the analysis of the BIN1 data
set with deuteron corrections (log
of evidence given). Black bars de-
note the ANL number of events in
each Q2 bin.

We adopted MLP configurations with 1-4 hidden units in a single hidden layer. As can be
seen in Fig. 1, all the best models within each MLP type reproduce well the ANL data. The fits
including all bins, Fig. 2, show a positive slope at low Q2 which result in a negative value for the
axial radius squared, r2

A, incompatible with all the available determinations. The height of the FA

local maximum is reduced once the deuteron correction is included; this maximum disappears when
the first bin has been removed from the ANL data. The value of rA for the best fit corresponds to the
BIN2 data and has a value compatible with other determinations such as the z-expansion ones from
bubble chamber data [9] and from muon capture by protons [10] but with a significantly smaller
error [1]. We realize that deuteron effects are sizable by looking at the changes in the behavior of
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Figure 2: Left (right) panel shows the best fit to the the BIN0, BIN1 and BIN2 data sets, obtained
without (with) deuteron corrections. The shaded areas denote 1σ uncertainties of FA.

FA at low Q2 when we add the deuteron corrections and when we take out the first bins of the data.
At low Q2, a poorly understood efficiency could also have an impact on the results. In the case
of BIN1 and BIN2 sets, the present analysis does not show significant deviations from the dipole
ansatz. On the other hand, Bayesian techniques allow us to avoid both over-fitting and under-fitting,
thus neural-network fits have smaller uncertainties compared to dipole or other determinations.

With new more precise data from (anti)neutrino scattering on hydrogen and/or deuterium (see
Ref. [11] for a novel proposal), techniques like the one applied in the present study shall prove
valuable to unravel the axial structure of the nucleon.
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