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We review the current status of the understanding how the accretion onto the central black hole
proceeds in Active Galaxies. Standard accretion disk is a key element in all relatively bright active
galaxies like Seyferts and quasars, although it is not present in very low luminosity sources, like
Sgr A*. However, the standard disk does not explain the broad band spectrum, so the disk has
to be supplemented with a number of additional components, and our deeper understanding of
these components is still far from being complete. These additional elements are: compact hard
X-ray corona, inner hot flow, warm corona, disk wind and the Broad Line Region, and finally
dusty/molecular torus. All these elements seem to be needed in various proportions, depending
predominantly on the Eddington ratio of a given source. These elements also interact with each
other which is not yet fully taken into account.
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Figure 1: A schematic view of the messy central region by authors; for more elegant drawings see [1].

1. Introduction

Active Galactic Nuclei are now basically understood, and we accept a universal picture of
them, whether the nucleus is only weakly active, like Sgr A* at the center of the Milky Way, or
strongly active as distant quasars. The nucleus of every galaxy contains a supermassive black hole.
The level of nucleus activity depends on the amount of matter inflowing onto the black hole which
varies over time. As the matter inflows, it loses angular momentum and energy, and the emission of
matter from close vicinity of black hole provides us with information about this spatially unresolved
region.

Despite the general agreement about the underlying mechanism of the emission, the progress
in understanding the details of the process is rather slow. This is because the nucleus region is
actually quite messy, with outflow accompanying inflow, and the atmosphere of active nucleus is
partially surrounded by dynamically changing clouds.

2. Standard Accretion Disk

A firm element of theoretical explanation of the AGN activity is the standard model of an
accretion disk, firstly introduced by [2], and then fully developed by [3]. The Keplerian disk
accretion has been earlier introduced by [4] in the context of AGN but it lacked the power of
parameterization by viscosity parameter α . Relativistic version of the standard model was later
presented by [5].

The model in its most basic form is very simple. It is assumed that the accreting matter has a
very large angular momentum, viscous forces are responsible for the transfer of angular momentum
outwards, and a stationary inflow with the accretion rate Ṁ slowly proceeds onto the black hole
through a set of Keplerian circular orbits, with zero-torque boundary condition at the disk inner
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Figure 2: The exemplary set of spectra from standard accretion disks for a range of spins. Upper panels
show the dependence on black hole mass (106,108 and 1010M�, fixed L/LEdd = 0.1). Lower panels show the
dependence on Eddington ratio (0.01, 0.05, 0.1 and 0.5, for a fixed mass of 108M�). The figure is adopted
from [6].

radius, usually located at Innermost Stable Circular Orbit (ISCO). The disk radiates locally in the
form of a black body. Knowing the black hole mass, MBH , its spin, a (in full GR case), and Ṁ, one
can determine the flux as a function of radius and also the temperature profile of the disk, uniquely
and independently of the viscosity mechanism. Inner boundary condition sets the maximum value
of the accretion disk temperature. Assuming that disk is locally emitting as a black body, we can
calculate the accretion disk spectra for a range of black hole masses, Eddington rations and spins.
Examples of such theoretical spectra are shown in Fig. 2.

Such theoretical spectrum resulted from the standard model of accretion disk is frequently
seen in the spectra of quasars. For example, authors in [7] showed several quasar spectra all nicely
fitted by this simple model, and only some sources required correction for the reddening in the
host galaxy. However, the presence of this element is a characteristic feature only for those sources
efficiently accreting with Eddington luminosity ranging between a few percent and below 0.3.

3. Elements of the puzzle

For quasars, this is not yet the end of story, but the beginning. The broad band spectra of
quasars are far more complex (see Fig. 11 in [8]). Optical-UV band is indeed dominated by the
Big Blue Bump which is well described by the classical accretion disk model, but additionally we
see considerable amount of emission in IR, which comes from the hot dust around the nucleus
(dusty/molecular torus) and the host galaxy. In the soft X-rays there is a relatively steep power law,
and in hard X-rays another power law emission is usually seen, extending up to ∼ 100 keV. Blazars
(radio-loud objects) have an additional strong jet which is oriented toward an observer, and can
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dominate the entire broad band spectrum due to the Doppler boosting. In my talk I will concentrate
on the radio-quiet sources, leaving the jetted sources aside.

In order to model the entire broad band spectrum, including the variability, and to well repre-
sent all types of active nuclei, we need to have additional elements of the puzzle which do not come
from the first principles. Therefore, these elements are considered to be there, and are then tailored
with respect to some basic physical properties. We are not yet at a position to say that assuming
some inflow of matter at the outer radius would reproduce all these elements. Such computations
would need proper treatment of the magnetic field, radiative transfer (including ionization state),
dynamics - all in a very broad range of timescales. Thus what is usually done is to invent these
additional elements and look for observational constraints on their properties.

Thus, apart from the disk, we usually consider the following elements which I will discuss
them below:

• compact corona/jet base

• inner hot flow

• warm corona

• disk wind/Broad Line Region

• dusty/molecular torus

3.1 compact corona/jet base/lamp-post

This element is most often known as lamp-post model since it is sometimes technically as-
sumed to be a point-like sources of hard X-rays. Historically, it can be connected to the jet-base
model already proposed by [9]. This element is supposed to be responsible for the hard X-ray
emission.

Observationally, such element is present both in high and low Eddington ratio sources, al-
though its contribution to the total energy budget in high Eddington sources is small. Kubota &
Done proposed that the total luminosity of the component saturates at 2% of the Eddington flux
[10], which might be related to the raising efficiency of the pair creation [11, 12, 13, 14, 15, 16].
Also magnetic field reconnection is likely to play the important role there, e.g. [17].

There are observational constraints on the size of this region, 1− 10RSchw, which come from
variability [18], X-ray reflection [19, 20], and quasar microlensing in X-ray band [21]. The jet
formation, and perhaps the compact corona under discussion, requires the presence of the large
scale magnetic field, which in turn requires geometrically thick inner disk. The important process
in this region is also magnetic field reconnection. It has probably a close connection to the concept
of blobby ejection which is a characteristic feature of high Eddington sources (e.g. 3C 273, [22]).
It is interesting to note that rapid flares in the most inactive AGN, Sgr A*, are also well-described
by a ball of order of RSchw in size [23]. Another physical process which might be closely relevant is
the idea of Magnetically Arrested Disks (MAD) firstly constructed by [24], then rediscovered after
27 years in [25]. Full understanding of this region is still far. However, the issue takes us to the
problem of the inner disk.
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3.2 Inner Hot Flow

Inner Hot Flow is still the matter of the debate but there are two important reasons why it has
to develop in the innermost part of the disk. The first reason is that jets need a large scale magnetic
field to be formed, and such a large scale magnetic field can be supported by a geometrically thick
accretion flow. The second reason is that the existence of the cold Keplerian Shakura-Sunyaev
accretion disk in very low Eddington ratio flows, e.g. Sgr A*, is firmly excluded so the accretion
must proceed in the form of geometrically thick hot flow. This suggests that the extension of the
hot flow depends strongly on the source Eddington ratio. However, it does not set the flow nature.

There are two basic geometrical setups for such a flow: radial and vertical. The first one is
well known since many years as ADAF (Advection-Dominated Accretion Flow), firstly proposed
by [26], which became popular later on, starting with a paper by [27]. ADAF flow is widely
different from the Shakura-Sunyaev solution: the inflow is fast; the angular momentum of the
plasma is only a fraction of the local Keplerian angular momentum; the plasma is two-temperature,
with ion temperature close to the local virial temperature; the dissipated energy is transferred from
ions to electrons which are cooled down efficiently by Comptonization of the soft photons, which
either come from the outer cold disk or are locally generated by the synchrotron mechanism. In
this scenario, we have in general an outer cold disk and an inner hot flow. In the second scenario,
we have a hot flow above the cold disk, and such solutions were proposed by [28, 29]. It can
be named as coronal flow. The physics of the hot phase is similar to the previous case, but the
overlap with the cold disk makes the presence of the soft photons more important. In reality, we
can likely have a combination of the two, sandwich-type coronal flow in the outer part and a purely
hot flow in the innermost part. Coronal flow has been studied in a number of papers. Some of
them discussed the physics of the mass exchange between the disk and the corona, which results
from the heating/cooling balance in the two media plus electron conduction between the disk and
corona [30, 31, 32, 33, 34]. Time-dependent two-phase flow has been modeled by [35], showing
that at high accretion rates the corona flow is weak but at low accretion rates the disk is evaporated
and a pure hot flow forms. The strong dependence of the cooling efficiency on density leads us to
a prediction that actually, at medium accretion rates, an inner cold disk can form, separated from
the outer cold disk by a gap made of hot flow only. The full physics of the hot flow is still not
fully understood. ADAF model cannot be formed in presence of equipartition between magnetic
and kinetic energy, what was suggested in the model, because of heating due to magnetic field
reconnection [36], and this reconnection process studies accelerated only in the recent years.

Observationally, the issue is not so easy to set. Determination of the transition radius between
the outer cold disk and the inner hot flow is not unique even for the same data sets [37].

The presence of the hot flow should have some observational consequences. The hot flow
should provide the mass to the hot compact corona, so this medium should be between the inner
cold disk, if it is there, and an observer. This is never discussed in the simple parametric models
(see Fig. 3).

Hot flows easily lead to some outflow as already discussed by [38] who introduced a concept
of Advection Dominated Inflow-Outflow Solutions (ADIOS). This outflow takes mass, angular
momentum and energy away from the main flow which then cannot be treated as conservative. We
cannot predict the efficiency of such an outflow, but in some cases it can be observationally tested.
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Figure 3: The schematic view of the inner cold disk and a compact corona. Hard X-ray emission from the
corona irradiates the disk. Mass supply to the hot corona is not included in this picture.

For example, such an outflow can provide an explanation why in galactic black holes the value of
spin, determined by the continuum fitting method apparently, depends on the luminosity state of
the source [39].

3.3 Warm corona

Hot corona around accretion disk, together with a convective instability, was first considered in
[40, 41]. Formation of such corona due to heating by magnetic reconnection was calculated in [42].
After 15 years, a static corona in a sandwich geometry has been introduced by [43] to explain the
hard X-ray emission. However, authors in the original paper already showed that such geometrical
setup does not produce hard X-ray spectra. Later patchy corona [44, 45] or outflowing corona [46]
were introduced which aimed at obtaining harder spectra through a decrease of the soft photon
flux due to geometrical or relativistic effect. Hard X-ray emission models later shifted towards
the compact corona (see Sect. 3.1). However, the need for a sandwich-type corona reappeared
when more attention was payed to soft X-ray spectra and soft X-ray excess. In particular, soft
X-ray excess in many AGN is well fitted by Comptonization in a medium with very moderate
temperature, of order of 1 keV or less [47, 48], but large optical depth. We call this medium warm
corona to differentiate from the compact hard X-ray corona discussed before. Such corona must be
heated by magnetic dissipation, and cooled by Comptonization.

Such warm corona is theoretically attractive since besides reproducing soft X-ray spectra it
can also stabilize the accretion disk at the same time which is otherwise subject to the radiation
pressure instability, e.g. [49, 50, 51]. The existence of such temperature inversion in the optically
thick medium (warm corona is hotter than the disk inside it) has been discussed by [52] where it
was shown that the medium can have an optical depth of up to 20, being cooled by Comptonization,
and still remains in hydrostatic equilibrium, if the role of the magnetic pressure is dominant. Some
researchers proposed a detailed model of how the magnetic heating of such corona can work [53].

Warm corona is necessary to fit the broad band spectra of AGN, and such element is for
example included in the new SED fitter proposed by [10].
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Figure 4: The schematic view of the warm corona.

3.4 Inverse-Compton heated extended corona and wind

Such an element has been theoretically predicted many years ago [54]. If the radiation pro-
duced close to the black hole irradiates the outer part of a standard accretion disk, a hot layer forms
above the disk, with the temperature determined by the balance between Compton heating and
Compton cooling (i.e. Inverse Compton temperature). The value of the temperature depends only
on the spectral shape of the incident radiation and typically is about 106 − 108 K. Close enough
such a temperature is smaller than the virial temperature, and the medium forms a static extended
corona, further out the virial temperature is smaller and the heated medium inevitably forms a wind.
The transition between the static corona and a wind region takes place at about 105RSchw.

Observationally, such an extended corona is observed in galactic sources, e.g. [55, 56]. In
AGN the presence of this fully ionized medium is less clear. It is probably not related to Ultra-Fast
Outflows (UFO) [57] but perhaps this medium forms a confining medium for denser clouds of the
Broad Line Region.

3.5 Line-driven winds

The accretion disk atmosphere in AGN disks is not as highly ionized as in galactic sources, so
Compton-driven rather than line-driven wind is expected [58, 59]. Classical model of line-driven
wind from stars, and other objects, was developed in [60]. Line-driven winds may well constitute
the significant part of the Broad Line Region. As introduced by [61], BLR basically consists of
two parts: High Ionization Lines (HIL), and Low Ionization Lines (LIL). HIL is located closer in,
shows lower local densities and lower column densities in comparison to LIL. HIL examples are
CIV and He II lines which generally show signatures of outflow. Balmer lines as well as Fe II
pseudo-continuum belong to LIL class, and the outflow signature is much fainter or absent in these
lines. The connection between the line driven winds and BLR was already explored in much detail
by [62, 63].

Observationally, there are many signatures of outflows in AGN, in the form of UFO, WA
(warm absorber), Broad Absorption Line (BAL), and asymmetry in some emission lines. How-
ever, detailed undestanding of the launching process is not easy. Force multiplier due to the line
absorption can be above 100, but too strong irradiation leads to over-ionization of the plasma and
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reduction of the radiation pressure. Thus, a need for some shielding of the launching region has
been under discussion for many years, e.g. [64]. But too much shielding would prevent launching
the outflow, and the appropriate balance would also be difficult to reach in self-consistent compu-
tations transfer, e.g. [65].

4. Broad Line Region

Broad emission lines in the optical and UV band are the most characteristic features of AGN.
Not all AGN have them: objects with broad lines are classified as type 1 AGN, and objects without
broad lines as type 2 AGN [66, 67]. Type 2 AGN is the heterogeneous class: some of them
have BLR hidden behind the dusty/molecular torus, and observer can see broad emission lines
in polarized light scattered by extended medium [68], but some of type 2 AGN are rather true
type 2 AGN, devoid of the BLR which seem to belong to low luminosity AGN. Observationally,
obscuration and the existence of the hidden BLR is not always easy to exclude, but sources like Sgr
A* certainly do not have any BLR.

The location of the BLR can be determined by the reverberation studies. The basic mea-
surement is the determination of time delay of the emission line with respect to the continuum
[69, 70, 71]. The geometry of BLR, however, is not given by a single number. For example, a 2-D
numerical model of BLR is calculated in [72]. There are also successful attempts to reconstruct the
3-D geometry of the BLR as an extended region, e.g. [73, 74]. These results show that the motion
of the BLR clouds is predominantly Keplerian, but with an additional inflow or outflow component.

The simple measurement of the effective time delay is particularly important since it allows
for the black hole mass determination. Time delay measurement provides the effective radius of
the BLR, line width gives the velocity, and combining these two quantities we can calculate the
black hole mass from the Kepler’s law. There are of course some additional issues, like the use
of the Full Width Half Maximum (FWHM) or σ as the descriptor of the line shape, e.g. [75], and

Figure 5: The schematic view of disk, BLR and the dusty torus, together with the optical/UV spectrum of
an AGN (with the permission from Krzysztof Hryniewicz).
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the issue of the proportionality coefficient which is related to the geometrical distribution of cloud
orbits.

Reverberation campaigns were mostly done for relatively nearby AGN, for Hβ line since this
line is strong, and additionally the presence of the narrow [OIII]5007Å line was convenient for
calibration of results obtained from different telescopes.

Monitoring led to discovery of the tight relation between the monochromatic flux and the
time delay [70, 71]. Such a relation opened a way to massive black hole mass determinations in
thousands of AGN at the basis of a single spectrum measurement [76, 77].

Theoretically, such a relation was surprising since the general expectation was that the BLR
distance should scale as the square root of the ionization flux, not as the square root of the monochro-
matic luminosity in the optical band. However, a simple theoretical explanation of such a scaling
has been formulated by [78]. In their approach the onset of the BLR is defined by the disk radius
where the material is efficiently shifted above the disk by the radiation pressure acting on dust. We
know well from stellar astrophysics that dusty winds are orders of magnitude more efficient than
line-driven winds in hotter stars. The Failed Radiatively Accelerated Dusty Outflow (FRADO)
provides a physical mechanism to rise up the material from the disk in the form of massive wind
but as soon as the gas is better exposed to the irradiation by the central region the dust is evapo-
rated, the radiation pressure support is lost and the matter falls back toward the disk. This picture
is suitable for the LIL part of the BLR and explains why there are no strong outflow signatures.
The model in its simple analytical form is consistent with the data and can approximately predict
the line shapes [79]. Similar model, but static, has been recently developed by [80]. Theoretical
explanation allows us to safely extend the relation for sources with higher mass and higher redshift,
and to use it both for black hole mass determination and for cosmology, as tracers of the expansion
rate of the Universe [81, 82, 83].

4.1 clumpiness of the BLR region

We frequently refer to the BLR clouds, but the actual physics of the region is not yet described
in time-dependent way with high precision. The disk wind starts as a roughly continuum medium,
but the thermal instability operating in hard X-ray irradiated medium leads to cloud formation [84].
Indeed, rare cases of the X-ray eclipses with timescales of few days appropriate for BLR clouds
indicate a cometary shape of a single cloud [85]. The thermal instability predicts the optical depth
of the cloud to be of order of 1023 −1024 cm−2.

Another way of looking at the cloud formation is in terms of the radiation pressure confinement
[86, 80]. In this picture, a dynamical condition instead of thermal balance is superimposed. This,
however, requires the pre-existence of a boundary, and does not depend on the spectral shape.

The formation of a two-phase medium leads to a more complex dynamics, in particular a
combination of inflow and outflow, depending on the medium conditions. Denser colder clouds
may inflow more easily while surrounding hot plasma may have temperature higher than virial and
flows out. Examples of such plasma coexistence can be found in many locations, including Sgr A*
region [87, 88, 89]. However, colder clouds may be subject of increased radiation pressure from
the nucleus, so that they will rather flow out than in, like in a simulation by [90]. Net effect will
strongly depend on many details.
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Figure 6: The schematic view of accretion disk overlaping or not overlaping with BLR.

5. Outer radius of the accretion disk

Schematic pictures frequently show the accretion disk surrounding the black hole and the BLR
at larger radii. However, the overlap between the BLR and the disk is not firmly settled. Observa-
tionally, in bright quasars the accretion disk extends well into the IR but this spectral component
can only be seen in the polarized light [91], otherwise it is buried in the starlight from the host
galaxy. Its extension corresponds to disk atmosphere temperatures of about 1800 K. At longer
wavelengths the hot dust is seen but this component comes from the dusty/molecular torus.

In FRADO or any wind-based model of the BLR the disk has to be present in the BLR region.
However, BLR models based on cloud inflow from larger radii, e.g. [92], do not imply such a
condition. Observationally, it is not easy to say whether we see clouds only above the equatorial
plane (those below are shielded by the disk) or on both sides of the equatorial plane (no disk).
Theoretically, there is a well known mechanism which can actually lead to efficient destruction
of the outer disk: gravitation instability [93, 94]. The comparison of the predicted effect of self-
gravity of the disk with the location of the BLR done in [95] did not show any signature of the
gravitational instability. Also the parameter space characteristic for true type 2 AGN (those having
low Eddington ratios) is rather consistent with disappearance of the BLR due to the destruction of
the cold Keplerian disk and replacement with an inner ADAF, e.g. [96].

Physically, the issue of the outer disk radius is connected with the issue of the interaction of
the nucleus with the host galaxy. First, we need a reservoir of material to feed the nucleus, and
the angular momentum of this material along with the corresponding circularization radius gives
a certain constraint. Next, since in the disk accretion flow the angular momentum is transported
outside, it causes a continuous expansion of the disk outer radius unless there is an additional
mechanism of angular momentum removal like magnetic wind or the action of tidal forces from
the Nuclear Stellar Cluster. Observationally, we do not have the proper insight into the issue since
our spatial resolution reaches an inner few parsecs only in some nearby AGN [97].
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6. Summary

The approach we described in this review is mostly parametric, although using physical laws
for description of the specific elements of the puzzle. An alternative approach is also possible: to
use just physical laws and see what we can get. The second approach is represented with 3-D MHD
simulations supplied by radiative transfer, and an excellent example is a model of accretion disk
in cataclysmic variables (Blaes, this volume). However, such a disk has much smaller dynamical
range (basically the ratio of the outer to inner radius) than an AGN accretion disk, but it is still far
from grasping the whole disk evolution and all spectral elements (X-rays, for example). Thus the
progress has to be done from both sides with the hope that at some point the two approaches will
meet each other and will provide us with a full picture of the accretion pattern onto black holes in
general, including a case of AGN. However, we are still far from that. Thus, as a summary we want
to draw your attention to two semi-global models which are worth further detailed consideration.

6.1 global SED model

New global SED model has been recently proposed by [10]. The model is parametric but
it conveniently combines the three elements discussed above: hot compact corona, warm corona
and a cold disk. The schematic geometry is shown in Fig. 7. The model does not yet include all
possible complications like the overlap between the phases, and it treats the hot corona as a point-
like source in computations of reprocessing of the hard X-rays by the disk but the number of free
parameters is large enough to fit the data and to obtain interesting results [98]. While constructing
the model, they suggest that the compact corona luminosity actually saturates at some 2% of the

Figure 7: The schematic view of the Kubota & Done model which provides broad band spectra [10].
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Eddington luminosity while the source luminosity rises, which automatically leads to a systematic
decrease of the role of this component when Eddington luminosity is approached [10]. It might be
motivated by the fact that compact corona should not reach the compactness parameter leading to
efficient pair-creation.

6.2 UV-luminosity - X-ray luminosity relation

A very interesting observational tight relation between the UV luminosity and X-ray luminos-
ity has been found by [99]. Since the relation is non-linear, it can be used in cosmology as a new
tool for distance determination and for probing the expansion rate of the Universe [100].

The relation has been found through selection of blue quasars. In this selection, those sources
affected by extinction are eliminated but there is still some bias in the mass/accretion rate (SED
of quasars with too high mass and relatively low accretion rate would peak in the optical/UV
band, e.g. [101]). Nevertheless, for significant fraction of quasars the relation holds. The same
researchers proposed a theoretical explanation which relates the creation of hard X-rays to the
transition between the radiation-pressure and gas-pressure domination in the accretion disk [102].
Such a model does not seem convincing to us since in this case the corona must be formally very
extended while there are some arguments for compactness of this region. However, we think that
the issue is important and perhaps some modification of the model (formation of accreting corona
at the transition radius, with dissipation closer in) might offer more convincing explanation. On the
other hand, the postulate of the maximum of the hard X-ray luminosity by [10] is not identical to
the relation proposed by [99] so further observational work is also needed to set this issue.
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438 (3901âĂŞ921), 2014, [astro-ph/1309.7825].

15



P
o
S
(
A
P
C
S
2
0
1
8
)
0
0
6

Accretion in Active Galactic Nuclei Bozena Czerny

[87] A. Rozanska et al., Conditions for thermal instability in the Galactic Centre mini-spiral region,
MNRAS 445 (4385-4394), 2014, [astro-ph/1410.0397].

[88] P. Barai et al., Kinetic or thermal AGN feedback in simulations of isolated and merging disc galaxies
calibrated by the M-σ relation, MNRAS 437 (1456-1475), 2014, [astro-ph.CO/1307.5326].

[89] M. Elvis, Quasar Rain: The Broad Emission Line Region as Condensations in the Warm Accretion
Disk Wind, ApJ 847 (12), 2017, [astro-ph/1703.02956].

[90] P. Barai et al., Multiphase, non-spherical gas accretion on to a black hole, MNRAS 424 (728-746),
2012, [astro-ph/1112.5483].

[91] M. Kishimoto et al., The characteristic blue spectra of accretion disks in quasars as uncovered in the
infrared, Nature 454 (492-494), 2008, [astro-ph/0807.3703].

[92] J. M. Wang et al., Tidally disrupted dusty clumps as the origin of broad emission lines in active
galactic nuclei, Nature Astronomy 1 (775-783), 2017, [astro-ph/1710.03419].

[93] S. Collin, J. P. Zahn, Star formation and evolution in accretion disks around massive black holes,
A&A 344 (433-449), 1999.

[94] J. M. Wang et al., Star Formation in Self-gravitating Disks in Active Galactic Nuclei. II. Episodic
Formation of Broad-line Regions, ApJ 746 (27), 2012, [astro-ph/1202.0062].

[95] B. Czerny et al., A Test of the Formation Mechanism of the Broad Line Region in Active Galactic
Nuclei, ApJ 832 (11), 2016, [astro-ph/1610.00420].

[96] B. Czerny et al., Constraints for the accretion disk evaporation rate in AGN from the existence of the
Broad Line Region, A&A 428 (39-49), 2004, [astro-ph/0403507].

[97] D. Asmus et al., The Subarcsecond Mid-infrared View of Local Active Galactic Nuclei. III. Polar
Dust Emission, ApJ 822 (13), 2016, [astro-ph/1603.02710].

[98] H. Noda, C. Done, Explaining changing-look AGN with state transition triggered by rapid mass
accretion rate drop, MNRAS 480 (3898-3906), 2018, [astro-ph/1805.07873].

[99] E. Lusso, G. Risaliti, The Tight Relation between X-Ray and Ultraviolet Luminosity of Quasars, ApJ
819 (10), 2016.

[100] E. Lusso, G. Risaliti, A Hubble Diagram for Quasars, ApJ 815 (16), 2015,
[astro-ph/1505.07118].

[101] B. Czerny et al., Constraints on the black hole spin in the quasar SDSS J094533.99+100950.1,
MNRAS 415 (2942-2952), 2011, [astro-ph/1104.2734].

[102] E. Lusso, G. Risaliti, Quasars as standard candles. I. The physical relation between disc and coronal
emission, A&A 602 (15), 2017, [astro-ph/1703.05299].

DISCUSSION

Elme BREED: UV/optical variability studies find lags that are much longer than expected from a
standard Shakura-Sunyaev discs. Do these new models try to address that?

Bozena CZERNY: Not directly. However, in my opinion most of the effect comes from the fact
that only part of the disk radiation comes directly to the observer, while part is being scattered in
the disk wind or in the BLR intercloud medium. Such scattering does not change the spectrum but
causes additional time delay. We plan to model that in detail with Chris Done.
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