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The next generation of astronomical surveys will revolutionize our understanding of the Universe,
raising unprecedented data challenges in the process. One of them is the impossibility to rely on
human scanning for the identification of unusual/unpredicted astrophysical objects. Moreover,
given that most of the available data will be in the form of photometric observations, such char-
acterization cannot rely on the existence of high resolution spectroscopic observations. We intro-
duce an analysis of anomaly detection in the Open Supernova Catalog (http://sne.space/)
with use of machine learning. We developed a strategy and pipeline — where anomalous objects
are identified and then submitted to careful individual analysis. This project represents an effec-
tive strategy to guarantee we shall not overlook exciting new science hidden in the data we fought
so hard to acquire.

Accretion Processes in Cosmic Sources — II - APCS2018
3–8 September 2018
Saint Petersburg, Russian Federation

∗Speaker.
†https://pruzhinskaya.com/snad/
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1. Introduction

Supernova stars (SNe) are ones of the most beautiful and interesting objects in the Universe.
They are responsible for chemical enrichment of interstellar medium; density waves induced by
their energetic explosions causes the star formation; SNe are origin of high energy cosmic rays;
moreover, thanks to SNe we are studying the composition and distance scale of the Universe which
defines its following destiny.

The generation of precise, large, and complete supernova surveys in the last years has increased
the need of developing automated analysis tools to process this large amount of data. These sci-
entific observations present both great opportunities and challenges for astronomers and machine
learning (ML) researchers.

The lack of spectroscopic support makes the photometrical supernova typing top required. The
analysis of big supernova dataset with ML methods is needed to distinguish the supernova by types
on base of N-parameter grid. Such study allows us to purify the considered SN sample from non-
supernova contamination as well — the problem, which is relevant for all large supernova database
that collect SN candidates without careful analysis of each candidate and basing on the secondary
indicators (proximity to the galaxies, transient behavior, arise/decline rate on light curves (LCs),
absolute magnitude). It is also expected that during such analysis the unknown variable objects or
SNe with unusual properties can be detected. As an example of unique objects one can refer to
SN 2006jc — SN with very strong but relatively narrow He I lines in early spectra (∼30 similar
objects are known, [1]), SN 2005bf — supernova attributed to SN Ib but with two broad maxima on
LCs, SN 2010mb — unusual SN Ic with very low decline rate after the maximum brightness that
is not consistent with radioactive decay of 56Ni, ASASSN-15lh — for some time it was considered
as the most luminous supernova ever observed (two times brighter than super-luminous SNe), later
the origin of this object was challenged and now it is considered as a tidal disruption of a main-
sequence star by a black hole. Finding such objects (and then studying them more closely) is one
of the main aims of the current project. As such sources are typically rare, the task of finding them
can be framed as an anomaly detection problem.

Astronomers have already benefited from developments in machine learning [2], in particular
for exoplanet search [3, 4, 5], but the synergy is far from that achieved by other endeavors in
genetics [6], ecology [7] or medicine [8], where scientific questions drive the development of new
algorithms. Moreover, given the relatively recent advent of large data sets, most of the ML efforts
in astronomy are concentrated in classification [9, 10, 11, 12, 13, 14] and regression [15, 16] tasks.

Astronomical anomaly detection has not been yet fully implemented in the enormous amount
of data that has been gathered. As a matter of fact, barring a few exceptions, most of the previous
studies can be divided into only two different trends: clustering [17] and subspace analysis [18]
methods. More recently, random forest algorithms have been extensively used by themselves [19]
or in hybrid statistical analysis [20]. Although all of this has been done to periodic variables there
is not much done for transients and even less for supernova.

In this study we search the anomalies in photometrical data of the Open Supernova Cata-
log1 [21]. We use the Isolation Forest as an outlier detection algorithm that identifies anomalies

1https://sne.space/
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instead of normal observations [22]. This technique is based on the fact that anomalies are data
points that are few and different. Similarly to Random Forest it is built on an ensemble of binary
(isolation) trees.

2. Data

2.1 The Open Supernova Catalog

The data are drawn from the Open Supernova Catalog [21]. The catalog is constructed by
combining many publicly available data sources (such as Asiago Supernova Catalog, Carnegie Su-
pernova Project, Gaia Photometric Science Alerts, Nearby Supernova Factory, Panoramic Survey
Telescope & Rapid Response System (Pan-STARRS), SDSS Supernova Survey, Sternberg Astro-
nomical Institute Supernova Light Curve Catalogue, Supernova Legacy Survey (SNLS), MASTER,
All-Sky Automated Survey for Supernovae (ASAS-SN), iPTF, etc.) and from individual publica-
tions. It represents an open repository for supernova metadata, light curves, and spectra in an easily
downloadable format. This catalog also includes some contamination from non-SN objects.

Our choice is justified by the fact that the catalog incorporates the data for more than 5×104

SNe/SNe candidates (∼ 1.2×104 of SNe have > 10 photometrical observations and ∼ 5×103 of
SNe have spectra). For comparison, SDSS supernova catalog contains only ∼ 4×103 of SNe LCs
and ∼ 600 SNe with spectra.

The catalog contains the data in different photometrical passbands. To have a more homoge-
neous data sample, we chose only those SNe that have LCs in g′r′i′, gri or BRI filters. We assume
that g′r′i′ filters are close enough to gri and transform BRI to gri (see Sect. 2.2). We require >= 3
photometrical points in each filter with a 3-day binning. This threshold is justified by the fact that
our approach aims to deal with big data where the human expertise will not be possible. However,
the cadence of future transient surveys does not allow to get a well-sampled multicolour light curve
for all the transients with a nice coverage. Considering the sample we work with, the "3-points"
threshold does not mean that we have a little number of points on multicolour light curve in total.
We need them to better reconstruct a "poor" light curve basing on the others (see Sect. 2.3). After
this cut, our sample contains 3197 objects (2026 objects in g′r′i′, 767 objects in gri, and 404 objects
in BRI).

2.2 Transformation between BRI and gri

To increase the sample we convert the Bessel’s BRI into gri filters using the Lupton’s (2005)
transformation equations2. These equations are derived by matching SDSS DR4 photometry to
Peter Stetson’s published photometry for stars:

2http://www.sdss3.org/dr8/algorithms/sdssUBVRITransform.php
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B = u−0.8116 (u−g)+0.1313

B = g+0.3130 (g− r)+0.2271

V = g−0.2906 (u−g)+0.0885

V = g−0.5784 (g− r)−0.0038

R = r−0.1837 (g− r)−0.0971

R = r−0.2936 (r− i)−0.1439

I = r−1.2444 (r− i)−0.3820

I = i−0.3780 (i− z)−0.3974

(2.1)

Before to apply the filter transformation, we fitted the LCs with Gaussian processes (see
Sect. 2.3). First, we tried to use two Bessel’s filters to get gri. Obviously, in the Open Supernova
Catalog more objects have photometry only in two filters than in three, and if such a transformation
is enough we will have a larger sample. To check the quality of transformation with two filters
only, we made a test: we chose few objects with LCs available in both, SDSS and Bessel’s filters,
and compared the transformed gri with the original ones. As it is seen from the Fig. 1, the results
of comparison are unsatisfactory. This means that at least one more filter has to be added in the
analysis. The same test showed that three filters (BRI) are enough (Fig. 2).
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Figure 1: Light curves of SN2013ej. Points are the observations in gri filters [23, 24, 25]. Solid lines
are the approximation of results of the transformation from BR to gri filters with use of Lupton’s (2005)
transformation equations.

2.3 LCs fit

It is more convenient to implement the ML algorithm to the data with uniform time grid which
is unfortunately not the case with supernovae. Commonly used technique to transform unevenly
distributed data onto uniform grid is to fit them with Gaussian processes (GP). Usually, each light
curve is fitted by GP independently. However, in this study we use the MULTIVARIATE GAUSSIAN

PROCESS3 interpolation (RBF kernel). For each object it allows to correlate its multicolour LCs
and approximates the data by GP in all filters in a one global fit (for details see Kornilov et. 2019,

3https://github.com/matwey/gp-multistate-kernel
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Figure 2: Light curves of SN2013ej. Points are the observations in gri filters [23, 24, 25]. Solid lines
are approximation of the results of the transformation from BRI to gri filters with use of Lupton’s (2005)
transformation equations.

in prep.). With this technique we can reconstruct the missing parts of LC basing on LC behaviour
in other filters. For example, in Fig. 4 the maximum in g filter is reproduced from the r, i light
curves. This correlation does not assume any physical assumptions about LC shape.

When the fit by MULTIVARIATE GAUSSIAN PROCESS was done, we checked the results of
approximation by eye. Those SNe with unsatisfactory fit were removed from the further consid-
eration (mainly the objects with bad photometrical quality). We also extrapolated the fit to have a
bigger temporal coverage. In the end we got a sample that consists on 1999 objects.

Based on the results of approximation we extracted photometry (in flux) in the range of
[−20,100] days with 1-day bin relative to the LC maximum in r filter and the kernel parameters.
These values were used as features for our ML algorithm (see Sect. 3).

3. Anomaly detection

After the approximation procedure, each object has 373 features: 121×3 fluxes in three bands,
9 fitted parameters of Gaussian Process kernel, and logarithm of likelihood of the fit. We examine
two cases of outliers search: with all features and with smaller number of features obtained by
dimensionality reduction.

3.1 Dimensionality Reduction

Each object has its own flux scale due to the different origin and different distance. So, before
the dimensionality reduction procedure we normalized each vector of 363 photometrical points by
its maximum value and used the maximum value as one more feature. Then, we applied t-SNE [26],
a variation of stochastic neighbor embedding method [27], for dimensionality reduction of the data
with 374 features. Finally, we obtained 7 feature reduced data sets: from 2 to 8 features.

3.2 Methods: Isolation Forest

Isolation forest is an ensemble of random isolation trees. Each isolation tree is a space parti-
tioning tree similar to a widely-know Kd-tree. However, in contrast to Kd-tree, space coordinate (a

4



P
o
S
(
A
P
C
S
2
0
1
8
)
0
5
1

Machine Learning Analysis of Supernova Light Curves Maria Pruzhinskaya

Name Coordinates Object type Ref.
SN2016bln 13 34 45.49 +13 51 14.3 SN Ia-91T [28]
SN2013cv 16 22 43.16 +18 57 35.6 SN Ia-pec [29, 30]
SN1000+0216 10 00 05.87 +02 16 23.6 SLSN [31]
SN2006kg 01 04 16.98 +00 46 08.9 AGN [32, 33, 34]
Gaia16aye 19 40 01.13 +30 07 53.4 Binary microlensing event [35, 36]

Table 1: List of found anomalies.

feature) and a split value are selected at random for every node of the isolation tree. This algorithm
leads to an unbalanced tree unusable for spatial search, but the tree has the following important
property. A path distance between the root and a leaf is shorter on average for points distanced in
space from "normal" data. This allows us to construct enough random trees to estimate average
root-leaf path distance for every data sample that we have, and then rank the data samples based on
the path length.

We run the Isolation Forest algorithm on each data set (see Sect. 3.1) and obtained a list of
anomalies.

4. Results

We visually inspected ∼ 100 outliers among a total 1999 objects. Using the publicly available
sources we checked what kind of astrophysical objects they are. The most prominent outliers are
listed in Table 1 and described below, the rest are still being studied.

4.1 Peculiar SNe Ia

Type Ia supernova phenomenon is an explosion of a carbon-oxygen white dwarf that exceed
the Chandrasekhar limit either by matter accretion from a companion star or by merging with
another white dwarf [37, 38, 39]. SNe Ia are used as universal distance ladder since their luminosity
at maximum light is approximately the same. However, SNe Ia can be divided by subtypes and not
all of them are suitable for cosmology.

SN2016bln [28], classified by our code as anomaly, belongs to the so-called 1991T-like-
supernovae subtype (see Fig. 3). SNe Ia-91T are characterized by higher peak luminosity and
broader LCs than "normal" SN Ia, and different early spectrum evolution.

Another novelty is SN2013cv ( [29], see Fig. 4). This peculiar supernova has large peak optical
and UV luminosity and show an absence of iron absorption lines in the early spectra. [30] suggests
that SN2013cv is an intermediate case between the normal and super-Chandrasekhar events.

4.2 Superluminous SNe

Superluminous SNe (SLSN) are supernovae with an absolute peak magnitude M < −21 mag
in any band. According to [41] SLSN can be divided into three broad classes: SLSN-I without
hydrogen in their spectra, hydrogen-rich SLSN-II that often show signs of interaction with circum-
stellar material (CSM), and finally, SLSN-R, a rare class of hydrogen-poor events with slowly
evolving LCs, powered by the radioactive decay of 56Ni.

5
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Figure 3: Light curves in gri filters of SN Ia-91T 2016bln [40]. Solid lines are the results of our approxi-
mation by MULTIVARIATE GAUSSIAN PROCESS.
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Figure 4: Light curves in gri filters of peculiar SN2013cv [30, 33]. Solid lines are the results of our
approximation by MULTIVARIATE GAUSSIAN PROCESS.

SN 1000+0216 (Fig. 5) was discovered in the framework of the Canada-France-Hawaii Tele-
scope Legacy Survey Deep Fields and has a redshift z = 3.9. It may be an example of a pulsational
pair-instability SN or a SLSN-II which extreme optical emission is explained by the strong inter-
action between the expanding ejecta and massive CSM [31].

4.3 AGN

SN2006kg was erroneously classified as Type II supernovae ( [32], see Fig. 6). The following
studies identified it as an active galactic nucleus (AGN, [33, 34]).

4.4 Binary microlensing event

Gaia16aye [35] is an object with the most non-SN behavior in our set of outliers (Fig. 7).
In [36] it was reported that Gaia16aye is a binary microlensing event — gravitational microlensing
by binary systems — the first ever discovered towards the Galactic Plane.
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Figure 5: Light curves in gri filters of superluminous SN1000+0216 [31]. Solid lines are the results of our
approximation by MULTIVARIATE GAUSSIAN PROCESS.
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Figure 6: Light curves in gri filters of SN2006kg [34]. Solid lines are the results of our approximation by
MULTIVARIATE GAUSSIAN PROCESS.
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Figure 7: Light curves in gri filters of binary microlensing event Gaia16aye (http://gsaweb.ast.
cam.ac.uk/alerts/alert/Gaia16aye/followup). Solid lines are the results of our approxima-
tion by MULTIVARIATE GAUSSIAN PROCESS.
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5. Conclusions

The development of large synoptic sky surveys has led to a discovery of huge number of
supernovae and supernova candidates. Among the SN discovered every year, only 10% have spec-
troscopical confirmation. The amount of astronomical data increases dramatically with time and
already beyond human capabilities. While now community has dozens of thousands SN candi-
dates, during ten-year survey Large Synoptic Sky Telescope (LSST, [42]) will discover over ten
million supernovae (and only a small fraction of them will receive a spectroscopical confirmation).
The LSST cadence will allow to receive the light curves for ∼ 105 SNe, but before these SNe will
be used in any physical analysis, they must be classified by types. In order to process this informa-
tion and to extract all possible knowledge, machine learning techniques become necessary. Such
approach will allow not only to classify supernova candidates by known types, but to reveal other
variable objects (novae, counterparts of GW alerts, kilonovae, GRB afterglows) that were mistak-
enly classified as SN and what is even more important to detect astronomical objects with strange
physical properties — anomalies. Finding such objects (and then studying them more closely) is
of high priority and one of the main aims of the current study.

We used the Isolation Forest algorithm to search the anomalies in the Open Supernova Cata-
log. During the data pre-processing we fitted the supernova LCs in three (gri) filters by Gaussian
processes. The GP-MULTISTATE-KERNEL (Kornilov et al. 2019, in prep.) was specially developed
to introduce the correlation between the filters. As a result, we found ∼ 100 anomalies, among
which peculiar Type Ia SNe, SLSN, AGN, binary microlensing event.
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