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In the current paradigm, it is believed that the compact VLBI radio core of radio-loud active

galactic nuclei (AGNi) represents the innermost upstream regions of relativistic outflows. These

regions of AGN jets have generally been modeled by a conical outflow with a roughly constant

opening angle and flow speed. Nonetheless, some works suggest that a parabolic geometry would

be more appropriate to fit the high energy spectral distribution properties and it has been recently

found that, at least in some nearby radio galaxies, the geometry of the innermost regions of the

jet is parabolic. We compile here multi-frequency core sizes of archival data to investigate the

typically unresolved upstream regions of the jet geometry of a sample of 56 radio-loud AGNi.

Data combined from the sources considered here are not consistent with the classic picture of a

conical jet starting in the vicinity of the super-massive black hole (SMBH), and may exclude a

pure parabolic outflow solution, but rather suggest an intermediate solution with quasi-parabolic

streams, which are frequently seen in numerical simulations. Inspection of the large opening

angles near the SMBH and the range of the Lorentz factors derived from our results support our

analyses. Our result suggests that the conical jet paradigm in AGNi needs to be re-examined by

millimeter/sub-millimeter VLBI observations.
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1. Introduction

In the current paradigm, it is believed that the compact VLBI radio core of radio-loud AGNi

represents the innermost upstream regions of relativistic outflows. These regions of AGN jets

have generally been modeled by a conical outflow with a roughly constant opening angle and flow

speed. Nonetheless, some works [2, 15, 3, 9, 10] suggest that a parabolic geometry would be more

appropriate. It is thus reasonable to consider if the classic paradigm has to be revisited.

Unfortunately, in most of the sources, the transverse section of the jet is not well resolved

and it is difficult to check if this trend is a paradigm for all AGNi. In order to study the jet sizes

upstream, we take advantage of the core shift. On one hand, The core can be used as a probe for

the properties of the upstream jet regions. On the other hand, the core shift provides the location

of this region with respect to the central engine. Thus, by probing the core size, we can actually

investigate the upstream jet size at distance given by the core shift. The jet geometry can then be

parametrized with transverse radius R ∝ rε (with r, distance from the nucleus). The jet half opening

angle θ = arctan(R/r) is thus constant and is representative of a conical; ballistic jet if ε = 1, or

decreases in a parabolic; collimating jet if 0 < ε < 1.

We investigated archival data of various surveys (see [1] for details) in order to obtain infor-

mation of VLBI core sizes at 1.6, 2.3, 5.0, 8.6, 15, 22 and 86 GHz. We also estimated the location

of the core from the central engine at each frequency for every source using the core shift values

in [12]. We were able to compile appropriate values for the core size and distance for at least four

frequencies in a total of 56 objects.

2. Results

In Figure 1 left, we show a sample plot of the transverse size versus the core shift distance for

2128–123. A considerable number of sources show a large scatter in their data, with the goodness

of the fit R < 0.85. We consider the possibility that these low values may be due to the lack of

significant data for proper statistics and a reliable fit. In order to construct a criteria to check for

the data scatter, we consider these fits with R2 ≥ 0.85. Under this criteria, 11%, 60%, and 29% of

the sources have small (ε < 1/2), intermediate (1/2 < ε < 1), and large (ε > 1) geometry values,

respectively.

If we restrict ourselves to only these sources with R2 ≥ 0.85, then the average value for the

geometry parameter is < ε >= 0.85. In Figure 1 right, we show a histogram for the values of ε

for such sources. A Kolmogorov-Smirnov test indicates that the distribution is different from a

Gaussian with a significance of 90%. Thus, although with caveats and limited amount of data, our

source-by-source results suggest that there is a significant peak in the number of sources following

a semi-parabolic geometry.

3. A Global View

As a way to avoid the constraints due to the limited amount of data for each source, we consider

to combine the data for all sources together. Although our sample may consist on a mixture of

different geometries and a fit may not be relevant, this will allow us to study the global behavior of
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Figure 1: Left: Fit for the core transverse size versus core shift distance for 2128–123. Right: Histogram

of the fitted values of ε for the sources with R2 ≥ 0.85.

all sources and to search for a common structural trend. In order to perform a proper comparison,

data points are converted into the units of the gravitational radius rg = GMBH/c2 by using the black

hole mass MBH tabulated in [16] and [17].

The collected data (see Figure 2 left) may not support the classical picture of a jet starting

from the vicinity of the black hole with neither (1) a conical geometry (ε = 1) nor (2) a genuine

parabolic geometry (ε = 1/2). Instead, the data fits in an intermediate region where semi-parabolic

streamlines (0.5 < ε < 1) would exist. Quasi-parabolic streamline can be generally formed in ra-

diatively efficient accretion flows by utilizing general relativistic radiation magnetohydrodynamics

(GRRMHD) simulations (e.g., [8, 13, 11]).

We derived the jet intrinsic half opening angles. In Figure 2, right we plot these as a function

of distance from the central engine. It is clear that, for small radii, the opening angles are quite

large, suggesting that a quasi-conical expansion is unlikely in such a regime (otherwise jets would

be unrealistically wide even near the jet base). This also supports our view in which quasi-parabolic

structures are common.

The jet is expected to be causally connected with its symmetry axis, implying Γθ < 1, with Γ

the Lorentz Factor [7, 14]. Assuming Γθ ∼ 0.2 [4], the derived values of Γ ∼ 10−20 that we find

are in agreement with values of Γ ∼ 15 from observations [6, 5], which indicates that the derivation

of half opening angles from core size analyses is reasonable.

4. Conclusions

With our criteria, 60% of the sources show quasi-parabolic structure, with 1/2 < ε < 1, and the

median geometry value is < ε >= 0.85. Furthermore, the combined data fits in a region between

genuine parabolic and conical geometries, supporting the idea that, near the vicinity of the central

engine, the jet exhibits a semi-parabolic geometry. This seems to suggest that a semi-parabolic

jet shape may be more common near the innermost few parsecs of the jet, in contrast with the

conical shapes typically found on deca-parsec scales or further. We speculate that a transition from

parabolic to conical geometry may occur. Our result suggests that the conical jet paradigm in AGNi

needs to be re-examined by millimeter/sub-millimeter VLBI observations.
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Figure 2: The light gray area denotes the genuine parabolic streamline, while the dark gray area denotes

the quasi-conical streamline. A variation from 0.5 < a < 0.998 is considered as a shaded area. Left: Filled

black region denotes the black hole, while the hatched area represents the ergosphere for the black hole spin

parameter a=0.998. Right: Dotted, dashed, and dotted?dashed lines show Lorentz factors for 1◦, 0◦. 5, and

0◦.1, respectively.
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