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Supermassive black holes (SMBHs) in the centres of radio-loud active galactic nuclei (AGN)
produce collimated relativistic outflows (jets). Space-VLBI observations within the RadioAstron
key science program on AGN polarization provide images at an unprecedented resolution, which
enables us to study the magnetic field strength and morphology in the innermost regions of AGN
jets. We present here images from 1.6 GHz RadioAstron observations of the sub-parsec scale
jet in the powerful blazar 3C 345, revealing the complex jet structure at ∼200 microarcseconds
(∼1.9 pc).
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1. The RadioAstron AGN Polarization Key Science Program

Supermassive black holes in the centres of radio-loud active galactic nuclei (AGN) produce
collimated relativistic outflows (jets). Space-VLBI observations within the RadioAstron [5] key
science program on AGN polarization [6, 7] provide images at an unprecedented resolution, which
enables us to study the magnetic field strength and morphology in the innermost regions of AGN
jets. In this way the existence of helical magnetic fields can be tested by searching for Faraday
rotation gradients across the jet (e.g. [8]).
Ten of the brightest and highly polarized AGN were observed so far during observing periods AO-
1, 2, 3, 4, and 5 since July 2013 to April 2018, with continuation approved for AO-6 [6, 7, 9, 10].

2. Observations and data reduction

The strong blazar 3C 345 (1641+399) is a flat-spectrum radio quasar and is situated at a red-
shift of z = 0.59 [11]. The source is core-dominated and shows a bending jet at low radio frequen-
cies (e,g. [12, 13]).
The observations at λ = 18cm took place on March 30-31, 2016 during AO-3. A total of 18 an-
tennas from a ground array were observing, including the VLBA (except Mauna Kea) and eight
EVN antennas. These were complemented by the 10-m Spekt-R space telescope. We performed a
standard data reduction in AIPS, while the imaging was done in difmap with a uniform weighting
scheme. We detect ground-space fringes up to 9 Earth diameters. The resulting uv-coverage of
the observations is shown in Fig. 1.

Figure 1: Interferometric coverage (uv-coverage) of RadioAstron observations of 3C 345 at
1.6 GHz, with the color scale indicating the minimum brightness temperature inferred from the
visibility amplitudes [14]. These measurements imply a brightness temperature in excess of
3.4×1013 K in the most compact regions of the jet.

3. Results

We present the calibrated visibility data in Fig. 2 and preliminary images of the source in total
intensity in Fig. 3. The polarization imaging results will be presented elsewhere.
The minimum brightness temperature of the most compact features can be conveniently estimated
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using the visibilities only [14]. These estimates are shown in Fig. 1, where Tb,min is overplotted
onto the UV coverage. The maximum Tb,min that we find is about 3.4× 1013 K, showing at the
largest uv distances.

Figure 2: Amplitudes and phases obtained in the 1.6 GHz RadioAstron (top) and 15 GHz MOJAVE
(bottom) observations of 3C 345. The black data points in the top panel correspond to the space
baselines, red shows the source model (blue contours in Fig. 3). The RadioAstron data show a more
complex compact structure on baselines of > 100Mλ .
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3C 345 is monitored by the MOJAVE program and was observed on March 5th, 2016, nearly
simultaneously to our RadioAstron observations. The resolution of the 15 GHz VLBA image (see
the MOJAVE webpage) [1, 2] is comparable to the RadioAstron image. We recover the same basic
structure of the inner jet, although the MOJAVE data suggest more compact emission (see Fig. 2),
as the visibilities do not fall off as sharply at < 100Mλ .

Figure 3: 3C 345 at 1.6 GHz with RadioAstron, overlaid as contours over the ground array image
obtained from the same observation. The respective synthesized beams of the two images are
shown in the lower right corner. The beam minor axis is 2.33 mas (15.6 pc) for the ground array,
and 0.28 mas (1.9 pc) with RadioAstron. Images were obtained with a uniform data weighting.

4. Conclusions

The RadioAstron observation of 3C345 at 1.6 GHz have yielded fringe detections between
ground antennas and the space radio telescope up to projected baseline distances of ∼9 Earth diam-
eters. 3C 345 was successfully imaged with RadioAstron with sub-mas resolution, corresponding
to a projected distance of 1.9 pc or ∼5000 gravitational radii for a black hole mass of 4×109 M�
[15]. The visibility amplitudes imply the presence of emitting regions with observed brightness
temperature in excess of 3.4×1013 K, well above the inverse Compton limit of 1011.5 K. Consider-
ing the redshift z = 0.59 and the Doppler factor δ = 9.1 [16] of the source, the intrinsic brightness
temperature Tb,min ∼ 6× 1012 K, which is still above the theoretical limit. This suggests locally
efficient injection or re-acceleration of particles in the jet to counter the inverse Compton cooling,
or an unusual geometry of the jet.
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These results suggest promising future findings also for the linear polarization, the imaging of
which is under progress. Future modeling and comparison with radiative magneto-hydrodynamic
simulations will give more insight into the fundamental jet properties and the jet formation pro-
cesses.
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