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In the recent two papers [1, 2], we establish the Sudakov resummation improved perturbative
QCD calculation approach to quantitatively study the dijet and photon-jet transverse momentum
imbalances in high energy proton-proton collisions. The hard splittings have been taken into
account by the next-to-leading order calculation in perturbative QCD, while, the soft gluon radi-
ations (parton shower) have been taken care of by the Sudakov resummation. Based on BDMPS
energy loss approach, we calculate the transverse momentum imbalances in the nucleus-nucleus
collisions as well and extract the value of q̂. This proceeding is a summary of these two papers.
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1. Introduction

The jet quenching phenomenon is one of the strongest evidences for the presence of the quark-
gluon-plasma (QGP) in relativistic heavy-ion collisions [3, 4]. In the past decades, theorists and
experimentalists have been working closely to reveal the properties of QGP and quite a lot of
remarkable progresses have been achieved.

The nuclear suppression factor for single inclusive hadron/jet production, which encodes the
information about how much energy has been lost when the jets traverse through the QGP, has been
measured by experimentalists at both RHIC [5, 6] and the LHC [7, 8, 9, 10, 11]. Theorists have
been working with several energy loss models to quantitatively study the jet-medium interaction.
As one of the most impressive achievements, the jet transport coefficient q̂ has been extracted from
the nuclear modification factor of the single inclusive hadron production by the JET collaboration
[12]. However, since the nuclear modification in nucleus-nucleus collisions integrates many effects,
the nuclear suppression factor alone has limited power. It can give us a glimpse of what is going
on inside of the medium, but it is not able to decide which energy loss model tells a better story.

In order to gather more information about jet-medium interaction, we need to go beyond sin-
gle inclusive observables. For instance, the dihadron and hadron jet angular decorrelations in the
nucleus-nucleus collisions, as a direct consequence of the transverse momentum broadening effect,
have been measured [13, 14, 15, 16]. The averaged value of the transverse momentum broadening
square has been extracted quantitatively [17] from these measurements. In contrast with the nu-
clear suppression factor, the angular decorrelation does not heavily rely on the energy loss effect
and hence becomes a new aspect of the jet quenching study.

In this proceeding, we will briefly present our work on the correlation of transverse momenta
in dijet and photon-jet production processes [1, 2].

2. Sudakov resummation and fixed order calculation

The dijet or photon-jet transverse momentum imbalance is usually defined as the ratio of the
transverse momentum of an associate jet, which satisfies the given kinetic requirements, with that
of the leading jet (or photon) [18, 19]. xJ ≡ pT 2/pT 1. In the dijet case, only the leading and sub-
leading jets are measured. For the photon-jet production, all the jets located in the azimuthally
back-to-back of the photon contribute.

When ~pT 1 and ~pT 2 are back-to-back with similar magnitudes, ~qT ≡ ~pT 1 + ~pT 2 → 0. The
large Sudakov double logarithms arising from soft gluon radiations will appear in the fixed order
calculation which breaks the predictive power of the perturbative expansion. The resummation of
the logarithms is therefore mandatory to give reliable predictions [20]. However in the case that
qT is very large, the non-logarithm terms in the fixed order calculation become important. Hence
in order to calculate the xJ distribution in the full kinematic region, both formalisms are called
for. Several approaches have been made, for the sake of that one can match these two formalisms
together smoothly. This is certainly a topic of interest, but not our main point in this proceeding.

In our work, we employ a simple but quite effective method. As illustrated in Fig. 1, a
matching point φm is chosen to separate the phase space. When ∆φ is larger than φm, the Sudakov
resummation is turned on. The fixed order calculation will be in charge in the region ∆φ < φm. In
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this way, all-order soft gluon radiations have been taken care of by the Sudakov resummation, while
the fixed-order hard splittings have been taken into account by the next-to-leading order calculation
in perturbative expansion.
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. (2.1)

We have a few comments on Eq. 2.1: (1) Since both formalisms are properly normalized,
the sum of these two is approximately normalized to unity (this has been checked numerically).
(2) Our approach does not strongly depend on the choice of matching point, since there is a large
overlapping region in which both Sudakov resummation and next-to-leading order calculation can
describe the experimental data. φm is therefore actually not a free parameter.
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Figure 1: Matching of Sudakov resummation and fixed order calculation using the phase space separation.
Experimental data come from Ref. [21].

3. Unfolding and smearing

We want to note here that the detector response effect can significantly change the xJ distribu-
tion measured in the experiments. The procedure to correct this effect is called unfolding [19]. The
narrow peak at xJ ∼ 1 disappears, if the unfolding procedure has not been performed. We need to
keep in mind that only the fully corrected experimental data can be compared with the theoretical
results directly. In order to compare with the uncorrected data, we need to include the detector
response effect in the theoretical calculation, namely convolute with a smearing function.

For the photon-jet production, we can easily parameterize the one-dimensional smearing func-
tion in the following way,

dσ

d p⊥
=
∫ dr√

2πσ
exp
[
−r− r̄

2σ2

]
1
r

dσ

d p′⊥

∣∣∣∣
p′⊥=p⊥/r

. (3.1)

Where, p⊥ is the transverse momentum of the jet measured by the detectors; p′⊥ is the true trans-
verse momentum; r̄ and σ are the parameters determined by the detectors. While, for the dijet
production process, a two-dimensional smearing matrix is required, which complicates the situa-
tion.
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4. Numerical results

In this section, we show the numerical results calculated from the resummation improved
perturbative QCD approach and compare with the experimental data in Fig. 2. When we published
our paper, the fully corrected data for the photon-jet production process was not available yet.
Therefore we use Eq. 3.1 to simulate the detector response effect.
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Figure 2: The upper panel is the transverse momentum imbalance for dijet production compared with the
fully corrected data from ATLAS collaboration [18]. The lower panel is that for the photon-jet production
compared with the uncorrected data from the ATLAS collaboration [22].

In the BDMPS energy loss approach [23], the probability distribution for a jet to loss energy

ε is, D(ε) = 1
ε

√
α2ωc

2ε
exp
(
−πα2ωc

2ε

)
. Here, ωc is q̂L integrated over the propagation path L. The

jet transport coefficient q̂ is then extracted through comparing with the experimental data in central
nucleus-nucleus collisions at different center-of-mass energies.

5. Summary

We establish the resummation improved perturbative QCD approach to calculate the dijet and
photon-jet transverse momentum imbalances. We find q̂0 = 2−6 GeV2/fm at T0 = 481 MeV and
q̂0 = 2−8 GeV2/fm at T0 = 509 MeV, using the BDMPS approach for the energy loss calculations.
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16-CE31-0019, the Natural Science Foundation of China (NSFC) under Grant Nos. 11575070,
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