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Several analytic calculations of radiative jet energy loss demonstrated the importance of the non
Abelian Landau-Pomeranchuk-Migdal (LPM) effect, a coherence effect resulting from the finite
formation time of emitted gluons. While in these calculations it is possible to calculate gluon
emissions including the LPM effect by rigorously resumming diagrams to any order in the opacity,
it is still not straightforward to consider such coherence effects in dynamical transport simulations.
Therefore we revisit in this proceeding the implementation of the LPM effect in the partonic
transport approach BAMPS. By using Debye screened leading-order pQCD matrix elements for
the elastic and an improved Gunion-Bertsch approximation for the inelastic processes, BAMPS
simulates both the jet and medium evolution in ultra-relativistic heavy-ion collisions. We present a
comparison between an effective modeling of the LPM effect via a theta function in the radiative
matrix elements and a stochastic Ansatz for the suppression of gluon radiations. Finally, we
discuss possible consequences of both methods for jet quenching observables.
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1. Introduction

When traversing the hot and dense matter produced in ultra-relativistic heavy-ion collisions
[1], energetic partons lose energy by both elastic collisions and medium-induced gluon radiation.
Several analytical calculations for the radiative energy loss [2, 3] demonstrated the dominance of
the radiative energy loss for these jets. One important coherence effect for the radiative energy loss
of partons is the non Abelian Landau-Pomeranchuk-Migdal (LPM) effect [4]: Due to the finite for-
mation time of gluon emissions subsequent elastic interactions with the medium may act coherently
to the gluon production. This results in a suppression of emissions in comparison to the Bethler-
Heitler regime where gluon emissions are independent from each other. While the LPM effect is
calculable in analytic models by resumming arbitrary orders of diagrams, these calculations often
suffer from kinematic approximations leading to e.g. the violation of energy-momentum conserva-
tion. One possible alternative is the application of numerical Monte Carlo generators. However,
the connection between analytical formulations and their application in Monte Carlo simulations is
not trivial. The first successful method to describe the LPM effect within a Monte Carlo approach
was presented in Refs. [5, 6], where elastic scatterings of emitted gluons during the formation time
modified the formation of the gluons. By additionally introducing a stochastic suppression factor,
this approach is able to reproduce all parametric dependencies of the analytic BDMPS-Z formalism
[7]. Other stochastic approaches for the LPM effect can be found in Refs. [8, 9].

In these proceedings we report on our status in improving the LPM effect in the partonic trans-
port Boltzmann Approach to Multi-Parton Scatterings (BAMPS). To this end we discuss differences
between two potential methods for modeling the LPM effect in a Monte Carlo model: first we re-
visit the previous modeling of the LPM effect via a parametric suppression in the radiative matrix
element. After that we present our first attempt to model the LPM effect via a stochastic Ansatz.
This method will show the expected non linear path-length dependence ∝ L2 of the radiative en-
ergy loss. However, as we will see, in contrast to other approaches of stochastic LPM formulations
[5] our Ansatz does not describe the gluon emission spectrum dN

dω
∝ ω−3/2 as expected in analytic

formulations of the LPM effect. Finally, we present potential consequences of both methods for
experimental observables.

2. The LPM effect in BAMPS

The partonic transport approach BAMPS [10, 11] describes the full 3+1D evolution of both the
QGP medium as well as high energy particles traversing it by numerically solving the relativistic
Boltzmann equation,

pµ
∂µ f (~x, t) = C22 +C2↔3 , (2.1)

for on-shell partons, quarks and gluons, and perturbative quantum chromodynamics (pQCD) in-
teractions. To this end, a stochastical modeling of the collision probabilities together with a test-
particle Ansatz is employed.

Within BAMPS, both elastic 2→ 2 scattering processes calculated in Debye-screened leading-
order pQCD, like e.g. gg→ gg, and inelastic 2 ↔ 3 interactions, like e.g. gg↔ ggg, based on
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Figure 1: Scheme of the stochastic-LPM method in BAMPS.

an improved Gunion-Bertsch (GB) approximation [12, 13] are included. The matrix element for
gluon emissions is

∣∣M X→Y+g
∣∣2 = 48παs

∣∣M X→Y
∣∣2 (1− x̄)2

[
k⊥
k2
⊥
+

q⊥−k⊥
(q⊥−k⊥)2 +m2

D (αs)

]2

, (2.2)

where k⊥ and q⊥ are the transverse momentum of the emitted and internal gluons, respectively. For
more details about the general BAMPS framework and recent results we refer to Refs. [10, 11, 14,
15].

Previously, the LPM effect was modeled within BAMPS by an effective cutoff θ (λ −XLPM τ f )

in the radiative matrix elements, where λ is the mean free path of the radiating particle and τ f =
ω

k2
⊥

the gluon formation time. For XLPM = 1, this procedure effectively allows only incoherent
emissions, while XLPM = 0 leads to the Bethe-Heitler regime of no LPM suppression. Therefore an
implementation, where also some interference processes occur, should lead to a parameter in the
region 0 < XLPM < 1. For now, we treat XLPM as a parameter and study its consequences for the
radiative energy loss of partons in Sec. 3. As a remark, the infrared divergence of k2

⊥ within the GB
matrix element is effectively screened by the limit originating from the θ function. This parametric
model of the LPM effect is called the “θ -LPM method” throughout this paper.

The other method for modeling the LPM effect in this paper is a stochastic Ansatz similar to
that of Ref. [5]: when an inelastic process calculated via the improved GB matrix element occurs,
the emitted gluon is considered as not formed yet. During the formation time τ f =

ω

k2
⊥

the gluon
and its parent parton may only scatter elastically. These elastic scatterings modify the formation
time allowing also collinear gluon emissions. After completing the formation time, both the parent
parton and the emitted gluon may radiate again. All gluon emissions that are not completed within
the medium length L are rejected. This approach differs from other stochastic LPM approaches
mainly in two points: (i) there is no suppression factor accounting for the difference between
incoherent and coherent emissions, and (ii) during the formation time additional emissions are
forbidden. Both differences simplify the numerical procedure in BAMPS significantly with the
drawback that at the moment only incoherent gluon emissions can be reproduced. In contrast to
the θ -LPM method the infrared divergence of the GB matrix element is not cured by this method.
Therefore we introduce a limit k⊥;min that should be of the order of the Debye mass, k⊥ ∝ mD,
according to Ref. [16]. Therefore we introduce the parameter κ rad defined by k⊥;min = κ radmD
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that controls the screening of the divergence. Fig. 1 summarizes the approach that we will call the
“stochastic-LPM”(sLPM) method within this paper.

3. Radiative energy loss in brick of QGP
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Figure 2: Sensitivity of the differential energy loss dE
dx (left) and gluon emission rate dN

dωdz (right)
on the parameter XLPM, for partons with E = 100 GeV traversing a QGP with T = 0.4 GeV, in the
θ -LPM method.

As introduced in Sec. 2 the parameter XLPM effectively controls the suppression within the
θ -LPM method. Fig. 2 shows the sensitivity on XLPM for both the differential energy loss dE

dx (left)
and the differential gluon emission rate dN

dωdz (right) for a quark (gluon) with energy E = 100 GeV
that traverses a static brick of QGP with temperature T = 0.4 GeV at a constant QCD coupling
αs = 0.3. The differential energy loss shows an approximately logarithmic dependence on the
parameter XLPM. This dependence is caused by an increased rate of gluon emissions at small XLPM

due to the allowance of more collinear gluon emissions. In previous studies within BAMPS, we
fixed the LPM parameter to XLPM = 0.3 by a comparison to experimental data for the suppression
of pions at RHIC [14].

Since the emission rate within the θ -LPM method has no path-length dependence, the resulting
radiative energy loss is only linearly depending on the path length. On the other hand, the gluon
emissions within the stochastic-LPM have a path-length dependence due to the finite formation
time. As shown in Fig. 3a this leads to a quadratic path-length dependence of the energy loss
∆E ∝ L2 for small path-lengths L / 1fm. At larger medium lengths the energy loss again depends
linearly (∆E ∝ L) on the path length. The reason for this different behavior is that gluons with larger
formation time are suppressed for small medium path-lengths. This is in qualitative agreement with
analytic calculations such as e.g. BDMPS-Z [7].

The resulting energy loss of the stochastic-LPM method is an interplay between the suppres-
sion due to the collinearity of the emission and the increased emission rate due to the soft divergence
controlled by κ rad. While κ rad = 0.5 shows the strongest energy loss, the value of κ rad comes closer
to the previously employed θ -LPM with XLPM = 0.3.
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Figure 3: Comparison of the radiative energy loss of the θ -LPM and stochastic-LPM method.

4. Sensitivity of RAA to LPM effect

In order to study potential consequences of the stochastic-LPM method in BAMPS we present
in Fig. 3b the nuclear modification factor RAA = d2NAA/dpT dy

Nbin d2Npp/dpT dy calculated with the stochastic-LPM
method together with the previous calculation within the θ -LPM method with XLPM = 0.3 com-
pared to experimental charged hadron data. As a remark, we employed for the calculation of RAA

a running coupling evaluated at the microscopic scale of each process. For more details we refer to
Ref. [14]. Both LPM methods show a realistic description of the suppression of charged hadrons
at RAA. Interestingly, the sensitivity to the parameter κ rad is only modest in comparison to the
previous parameter XLPM of the θ -LPM. The strongest suppression occurs for a value of κ rad = 1.0.

5. Conclusions

We presented our first attempt to implement a stochastic method for calculating the non
Abelian LPM effect within the partonic transport approach BAMPS. Due to the finite formation
time of gluon emissions we find the expected quadratic path-length dependence as in other analytic
formalisms. We compared this new approach to our previous modeling via a theta function. Both
methods showed a realistic energy loss in terms of the nuclear modification factor RAA. Further
studies will focus on the implementation of a stochastic suppression factor as in other models for
the LPM effect [17]. These will allow us to also consider the difference between coherent and
incoherent gluon emissions.
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