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Jets are a promising way to probe the non-equilibrium physics of quark-gluon plasma (QGP).
We study how an out-of-equilibrium medium induces a jet particle to emit gluons. Evaluation
of the emission rate is complicated by Weibel instabilities which lead to an exponential growth
of chromomagnetic fields. Deriving a quantum field theoretical description of an unstable QGP
medium, we show that the chromomagnetic fields deflect jet particles during the gluon emission.
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1. Introduction

Heavy-ion collisions are a doorway to the non-equilibrium physics of QCD. Far from equilib-
rium, highly occupied gluon fields in the initial stages evolve into a nearly thermalized quark-gluon
plasma (QGP) medium which can be described using relativistic hydrodynamics. Furthermore,
heavy-ion collisions give access to transport coefficients of the QGP which are fundamental quan-
tities of QCD. These coefficients, which include shear and bulk viscosity, describe the medium’s re-
sponse to an external perturbation. A central goal is to learn about thermalization and the transport
coefficients of QGP using a wide variety of experimental probes, preferably ones that are sensitive
to the evolution of the medium, such as jets. This requires a detailed theoretical understanding of
jet quenching in non-equilibrium QGP.

At leading order in perturbation theory, an energetic jet particle interacts with a weakly coupled
medium through two processes. Firstly, the jet particle can scatter off a quark or a gluon in the
medium. Similar processes have been studied out-of-equilibrium in e.g. [1]. Secondly, the jet
particle can emit a gluon collinearly when it gets transverse kicks from the medium making it
slightly off shell, see Fig. 1. During the gluon emission the jet particle can get arbitrarily many
such kicks. This repeated interaction with the medium acts coherently and tends to reduce the rate
of emission, especially for more energetic jet particles. This is known as the Landau-Pomeranchuk-
Migdal (LPM) effect [2]. In these proceedings we will study how collinear gluon emission can be
evaluated in an out-of-equilibrium QGP. We will focus on challenges coming from the rapid growth
of chromomagnetic fields in a non-equilibrium medium because of Weibel instabilities.

E � Λ gΛ
Λ

Figure 1: An energetic quark (red) emitting a gluon (blue) collinearly. During the emission both the quark
and the gluon can interact arbitrarily often with medium through the exchange of soft gluons with energy
gΛ. Here Λ is the typical energy of particles in the medium and g is the coupling constant which we assume
to be small.

2. Hard thermal loops and Weibel instabilities

A weakly coupled plasma that is not too far from equilibrium [3] has two types of excitations at
leading order. Firstly, there are hard excitations of localized quasi-particles which can be described
by kinetic theory using a momentum distribution f (k). Their momentum is of the order of Λ which
corresponds to temperature in equilibrium. Secondly, there are soft excitations which are radiated
by the hard particles and have momentum ∼ gΛ where g is the coupling constant. They form a
cloud of soft gluons which deflects the hard particles. The physics of the soft gluons is described
by an effective theory called hard thermal loops (HTL). It was originally developed for a thermal
medium [4] but has been extended to non-equilibrium media [5].

The retarded correlator in HTL, Gret(ω,q), characterizes how the cloud of soft gluons responds
to fluctuations [6]. In general, it has a pole in the upper half complex plane at ω = iγ(q) because of
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Weibel instabilities [7].1 The essence of these instabilities is that fluctuations produce strong colour
currents which source exponentially growing gauge fields with growth rate γ . Non-Abelian inter-
action of the gauge fields stops the growth at later times. Weibel instabilities have been proposed as
being instrumental to the rapid thermalization in heavy-ion collisions [8]. However, recent studies
using classical field theory at very weak coupling suggest that the instabilities saturate before the
system reaches a non-thermal fixed point making their evolution unimportant for later stages [9].

In non-equilibrium HTL effective theory, one seemingly gets a divergent rate for jet-medium
interaction because of Weibel instabilities [10]. In fact the same problem plagues photon pro-
duction, heavy-quark diffusion, and the kinetic theory of quarks and gluons.2 Thus it is vital to
understand instabilities in HTL effective theory, irrespective of how big a role they play in the ini-
tial stages of heavy-ion collisions. In these proceedings we show that HTL is indeed a well-defined
framework for non-equilibrium systems. This allows for calculations of jet-medium interaction
which can be used to extract transport coefficients of the QGP using jet observables.

3. Unstable plasmas

The unstable plasma in HTL effective theory cannot be considered as static. Instead we must
follow the time evolution of the plasma starting at initial time τ = 0. We need analytic two-point
correlators representing how the cloud of soft gluons changes in time in order to evaluate quantum
effects like the LPM effect. Firstly, there is the retarded correlator, Gret, which has been derived
in earlier works [6]. Its poles describe dispersion relations of soft modes in the plasma. Secondly,
we need the classical rr correlator which is defined as Gµν

rr = 1
2〈{A

µ ,Aν}〉. It gives the occupation
of modes in the plasma. In thermal equilibrium it is given by Grr(P) = (1

2 + fB(p0)) [Gret−Gadv]

where Gadv(P) = −Gret(P)∗ is the advanced propagator and the Bose-Einstein distribution, fB,
describes occupation in equilibrium. In an unstable plasma we expect the rr correlator to grow
exponentially in time because of instabilities.

We specify initial conditions for the unstable plasma through the momentum distribution of
hard particles, f (k). The first instances in the evolution of the plasma are complicated because
of correlations with the initial state. We thus wait until time τ � 1/g2Λ where Λ is a hard scale
determined by the momentum distribution. We also assume for simplicity that there are no soft
gluons at the initial time; they are built up by radiation from the hard particles. Furthermore, the
growth of the gauge field ceases at late times because of its non-Abelian self-interaction. Then
the strength of the field becomes exp(γτ) ∼ 1/g2 which goes beyond HTL effective theory. The
growth rate is γ ∼ ξ gΛ where the anisotropy, ξ , measures how deformed f (k) is from an isotropic
distribution. Thus, we must consider times (g2Λ)−1� τ � (ξ gΛ)−1. Clearly, we have to assume
that ξ � g; in other words we need a small anisotropy if the time evolution is to be slow enough
for a controlled calculation. Despite the small anisotropy, the chromomagnetic fields will grow to
large values.

1These poles arise for any momentum distribution of hard particles, f (k), that is not isotropic. In general there are
multiple instability poles but for simplicity we will assume that there is only one. Our results can easily be extended to
the more general case.

2We note that calculations with a classical probe are well defined, see [11]
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Using the above approximations3 one gets analytic expressions for the correlators [12]. We
write the retarded correlator as

Gret(Q) = G̃ret(Q)+
D(q)

q0− iγ(q)
(3.1)

where we have isolated the instability part and G̃ret has no poles in the upper half complex plane.
Then the rr propagator can be written as Grr = G̃rr+Ginst

rr . The first term, G̃rr = G̃ret Πaa G̃adv, gives
the occupation density of the fluctuating soft gluon cloud which is present in thermal equilibrium
and does not evolve in time.4 The second term can be written as

Ginst
rr (x0,y0;q) =

(
D Πaa D†) 1

2γ

[
e2γτ − e−γ|t|

]
(3.2)

in the time domain with three-momentum. It describes how the gauge field grows exponentially in
time τ = x0+y0

2 because of the instabilities. Here t = x0−y0 is the variable conjugate to frequency.5

We can now see why earlier calculations got a divergent rate for jet-medium interaction: Ignoring
evolution in time, they did not include the term e2γτ . This leads to a divergence for modes that grow
slowly, γ→ 0. Here that limit is perfectly well-defined and the occupation density of soft gluons is
always finite.

4. Jet propagation in an unstable plasma

f
k + p

p
k = + + +

+ + +

Figure 2: Diagrams needed to derive Eq. (4.2). They describe a quark with momentum k+ p emitting a
gluon with momentum k collinearly. The function f denotes interaction with the unstable medium. The blue
rr propagator in the diagrams includes contributions from the fluctuating soft gluon cloud through G̃rr, as
well as from the exponentially growing gluon fields, Ginst

rr .

Now that we have a description of an unstable plasma we can study how a non-equilibrium
medium induces splitting of a jet particle. The particle gets kicks from the fluctuating soft gluon
cloud as in thermal equilibrium. However, it is also deflected in the classical instability field which
affects the emission rate. To study this further we need to evalute the Feynman diagrams shown in
Fig. 2. The function f describes interaction with the medium and determines the rate, R, of emitting
gluons with momentum k through

dR
d3k
∼
∫

d2h h ·Re f(h). (4.1)

3We furthermore only include leading order effects in ξ and ignore terms which oscillate rapidly during the time it
takes to emit a gluon, 1/g2Λ, since the oscillations cancel out.

4Here G̃adv = G̃∗ret comes from the advanced propagator and Πaa is one component of the polarization tensor.
5This can be seen from the Fourier transform of the propagator which is defined as

Ginst
rr (ω,q;τ) =

∫
d(x0− y0) eiω(x0−y0)Ginst

rr (x0,y0;q).
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Here h can be thought of as the transverse momentum particles acquire through interaction with
the medium. (We are omitting momentum distributions and splitting functions in this equation, see
[2] for further details.)

The equation determining f is [12]

2h = iδE f(h) +
∫

q⊥
C (q⊥) [f(h)− f(h− k q⊥)]+ ...

+
ik

δE +2iΓeq
F ·∇ f(h)+ ... +O(∂τ f).

(4.2)

where the additional terms have the same form as the terms shown explicitly. Here δE = Ep +

Ek−Ep+k where the energies include thermal masses and Γeq is the equilibrium decay width. The
integral in the first line describes kicks the particles get from the fluctuating soft gluon cloud. The
function C (q⊥) =

∫
q0
∫

qz G̃rr(Q) 2πδ (q0− qz) is the probability of getting a kick q⊥ from the
medium. It differs from the analogous function in thermal equilibrium. The second line describes
deflection by the instability fields with

F∼ g2K̂µ K̂ν

∫
d3q
(
D Πaa D†)µν

γ
−1 [e2γτ −1

]
q⊥ (4.3)

where we have omitted some kinematic and color factors. This term grows exponentially in time
with the instabilities and deflects the particles continuously in one direction. There is furthermore
a term O(∂τ f) which contributes at the same order. To go beyond leading logarithmic order in the
coupling constant further diagrams need to be evaluated; this is the subject of future work.
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