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1. Introduction

Thanks to its pointlike structure, a high energy electron is a clean probe of the internal struc-
ture of a hadron. To date, the most detailed measurements that probe the partonic substructure
of the proton have been performed by the HERA experiments H1 and ZEUS. For example, the
accurately measured structure functions [1, 2] are proportional to the parton densities and make it
possible to extract the quark and gluon distributions over a wide range of longitudinal momentum
fraction x and virtuality Q2. On top of that, additional information about the transverse geome-
try can be obtained from studies of exclusive vector meson production also studied extensively at
HERA (see e.g. [3, 4, 5]).

In exclusive (or diffractive) vector meson production one can measure the total momentum
transfer, which is Fourier conjugate to the impact parameter. Consequently, the transverse density
of the partonic content can be extracted. Additionally, in case of incoherent diffraction where the
proton dissociates, it becomes possible to access not only the transverse density profile, but also its
event-by-event fluctuations [6, 7, 8].

In the future, the Electron Ion Collider [9], complemented by ultraperipheral heavy ion col-
lisions studied at CERN, will provide precise measurements of the proton (and nuclear) structure
over a wide kinematical range, making it possible to study non-linear QCD effects and to constrain
the initial state of heavy ion collisions. In this context, we have studied in Ref. [10] the energy
evolution of the gluonic structure of the proton at small x.

2. Structure functions and vector meson production

The two processes considered in this work are inclusive photon-proton scattering (proportional
to the reduced cross section) and diffractive vector meson production. At high energies, these
processes are conveniently studied in the dipole picture, where the incoming virtual photon splits
into a quark-antiquark pair long before the interaction with the proton takes place. The quarks are
color rotated in the proton color field picking up Wilson lines, and finally they form the vector
meson. In case of inclusive processes, the optical theorem relates the forward elastic scattering
amplitude γ∗+ p→ γ∗+ p to the total inelastic cross section. A necessary ingredient in both cases
is the dipole-proton scattering amplitude N(r,b,x) for the dipole with transverse size r and impact
parameter b. In terms of Wilson lines, which contain all the information about the target, the dipole
amplitude is written as 1−N(x,y,x) = TrV (x)V †(y)/Nc with r = x−y and b = (x+y)/2.

In case of diffractive vector meson production, the cross section is a convolution of the photon
and vector meson (V ) wave functions (describing processes γ → qq̄ and qq̄→ V ), Fourier trans-
formed from transverse coordinate space to transverse momentum space. The scattering amplitude
reads (see e.g. [11])

A γ∗p→V p
T,L (xP,Q2,∆) = 2i

∫
d2r

∫
d2b

∫ dz
4π

(Ψ∗ΨV )T,L(Q2,r,z)e−i[b−(1−z)r]·∆N(r,b,xP). (2.1)

Here Ψ∗ΨV denotes the overlap between the virtual photon and the vector meson wave functions
(see [11] for details) and |∆|=√−t is the transverse momentum of the vector meson. The longi-
tudinal momentum fraction of the photon carried by the quark is denoted by z, and T,L refer to the
transverse and longitudinal photon polarization, respectively.
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In case of coherent scattering, in which the target remains intact, the cross section is dσ/dt =
|〈A γ∗p→V p

T,L 〉|2/(16π). The average over target configurations is denoted by 〈〉. In the incoherent

scattering the cross section becomes a variance: dσ/dt =
[
〈|A γ∗p→V p

T,L |2〉− |〈A γ∗p→V p
T,L 〉|2

]
/(16π).

As a variance, it measures the amount of event-by-event fluctuations in the scattering amplitude
(and in the impact parameter profile of N), whereas the coherent cross section is sensitive to the
average shape of the target. The total cross section for the γ∗p scattering is obtained by applying

the optical theorem: σ
γ∗p
L,T = 2∑ f

∫
d2bd2r dz

4π

∣∣∣Ψ f
L,T (r,z,Q

2)
∣∣∣2 〈N(r,b,x)〉, where 〈N(r,b,x)〉 is the

average dipole-target scattering amplitude. The sum f runs over quark flavors.
The Wilson lines are obtained as follows1. At initial x = x0 the MV model [13] is applied:

the color charge density at each point in the transverse plane is a local random Gaussian vari-
able with a correlator proportional to g4µ2Tp(b). In case we do not include proton substructure,
the transverse profile Tp is a simple Gaussian Tp(b) = e−b2/(2Bp), where the proton size at initial
x0 is controlled by Bp. When we also want to study the event-by-event fluctuations, Tp becomes
a sum of Nq Gaussians located around the sampled hot spot positions. The Wilson lines are ob-
tained by solving the classical Yang-Mills equations. Here, we also study a modified MV model
where we introduce an additional ultraviolet suppression factor, by replacing in momentum space
A+(x−,k)→ A+(x−,k)e−|k|v.

The energy evolution of the Wilson lines from initial x0 to any x < x0 is obtained by solving the
JIMLWK renormalization group equation (see e.g. [14]). In the Langevin form, which is suitable
for numerical calculations, it can be written as d

dyVx = Vx(ita)
[∫

d2zε
ab,i
x,z ξz(y)b

i +σa
x

]
. Here ξ

is a random Gaussian noise with coefficient ε , and σ is a deterministic drift term. For detailed
expressions and details about the implementation, the reader is referred to Ref. [10].

3. Results

The free parameters in our framework are the proton density g4µ2, its size Bp (and possible
substructure fluctuations) and the value of the strong coupling αs (or coordinate space ΛQCD when
we use running coupling) in the JIMWLK evolution. Additionally, we have to introduce infrared
regulators to suppress long distance Coulomb tails when sampling the initial condition and also in
the JIMWLK evolution. The parameters are fixed by fitting the HERA combined measurement of
the charm structure function data [2] as it is not sensitive to large dipole sizes [15].

The description of the charm reduced cross section data using a proton with no hot spot sub-
structure is shown in Fig. 1. In the figure the results with fixed coupling JIWMLK evolution are
shown, the result at running coupling being identical. With an ultraviolet suppression factor v > 0,
the Q2 evolution is better described and the goodness of the fit per degrees of freedom χ2/N im-
proves.

The proton size is extracted as the t slope of the coherent exclusive J/Ψ production cross
section dσ/dt ∼ e−BG|t|. The results are shown in Fig. 2. With running coupling the proton grows
faster than at fixed coupling. This is due to the fact that in both cases the average evolution speed
is similar (describes σr), but at running coupling the evolution of the short-wavelength modes is
suppressed relative to long wavelength ones that dominate the proton size measure at low |t|.

1A similar setup is used in Ref. [12]
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Figure 1: Description of the HERA charm produc-
tion data [2]. Figure from Ref. [10].

102 103

W [GeV]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

B
G

[G
eV
−

2
]

Fixed αs
Running αs
IPsat

H1 (2005)
H1 (2013)
ZEUS

Fit range 0.1 < |t| < 0.6 GeV2

Figure 2: Slope of the diffractive J/Ψ production
compared with the HERA data [3, 4, 5] as a func-
tion of photon-proton center-of-mass energy. Figure
from Ref. [10].
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Figure 3: Illustration for the evolution of the pro-
ton density with substructure and v = 0. Figure
from [7].
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Figure 4: Ratio of incoherent to coherent cross sec-
tion. The experimental uncertainties are computed
by assuming independent errors for total coherent
and incoherent cross sections [5]. Figure from [7].

To study the evolution of the proton geometry, we use a proton density profile Tp that consists
of Nq = 3 hot spots and fix parametrization such that the HERA coherent and incoherent J/Ψ mea-
surements at W = 75 GeV (corresponding to x ≈ 10−3) are reproduced, similarly as in Ref. [7].
Then, we use the same JIMWLK evolution constrained by the charm σr data, and compute diffrac-
tive cross sections at high energies. The resulting evolution of the proton density is illustrated in
Fig. 3 for a particular configuration. In Fig. 4 we show the obtained ratio for the incoherent and
coherent cross sections compared with the H1 data. For comparison, in Fig. 4 the result from an
IPsat model calculation, where there is no geometry evolution, is shown. In that case the proton
does not get less lumpy at small x, and the cross section ratio is practically flat.

When applying the framework to describe the total structure function with light quark con-
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tribution included, we find that the obtained results significantly underestimate the HERA data.
Similarly, the fit that describes charm σr data underestimates the J/Ψ production cross section.
The reason is that in our calculation dipoles where both quarks miss the proton do not contribute.
This is probably unrealistic, and one should include a separate description for the confinement scale
effects affecting these dipoles. One such a description is studied in Ref. [10].

4. Conclusions

The initial condition to the JIMWLK evolution is fitted to the HERA charm production data.
The resulting evolution of the proton structure is compatible with the measurement of the (gluonic)
size of the proton measured in exclusive J/Ψ production, but inclusive structure function and nor-
malization of the J/Ψ production cross section are underestimated. By calculating event-by-event
evolution for the fluctuating proton structure, we find that the initial hot spot structure is washed
out and the resulting energy dependence of the cross section ratio is compatible with the H1 data.
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