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We compute multi gluon production at mid rapidity in proton-nucleus collisions within the Color
Glass Condensate framework. We show that, in the dilute-dense limit valid for such collisions, the
terms responsible for the multi gluon correlation have two origins. On the one hand, the Hanbury-
Brown-Twiss interference in the final state. On the other hand, the Bose enhancement of gluons
in the projectile and target wave functions, with the latter being suppressed by the number of
colors with respect to the former. We also demonstrate that such correlations come from the
highest order relevant correlator of Wilson lines in the target wave function, i.e., the quadrupole
and sextupole for two and three gluon correlations respectively. We develop a general method for
the computation of such high order correlators that captures the bulk of their contribution to the
multi gluon production cross section but does not employ the approximation of a large number of
colours.
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Figure 1: Graphical illustration of Eq. (2.1) with the vertical lines representing the rescatterings with the
target through Wilson lines.

1. Introduction

The measurement of two particle correlations extended in pseudorapidity and peaked when
the particles are parallel or antiparallel in azimuth - the ridge - in pp and pPb collisions at the LHC
and dAu at RHIC, together with the finding of the striking similarities with nucleus-nucleus in
this and many other observables usually considered as signatures of the existence of deconfined
quark-gluon matter, has triggered a large theoretical and experimental activity on the subject, see
[1]. While the standard explanation of such azimuthal correlations in nucleus-nucleus collisions
are final state interactions leading to the applicability of relativistic hydrodynamics, it seems less
justified in smaller systems and initial state approaches have also been essayed. Among them, those
based on the Color Glass Condensate CGC seem to be the most promising for a first principle
explanation of such phenomenon. CGC explanations have been successful [2] in describing the
ridge in pp collisions under the ’Glasma graphs’ approximation [3] valid for collisions between
dilute systems.

We have shown in previous works [4] that the correlations in the Glasma graph approach have
two origins: Bose enhancement (BE) of the gluons in the projectile and target wave function (WF),
and Hanbury-Brown-Twiss (HBT) correlations of the final state gluons. In this contribution we
summarise the findings in [5] where an extension of the CGC approach to dilute-dense collisions
(see also [6]) has been obtained and applied to two and three gluon correlations. We focus here
only in deriving the correlations giving rise to even harmonics, for the problem of odd harmonics
and the comparison to experimental data see [1].

2. Two gluon correlations

In the CGC, the two gluon inclusive cross section (graphically shown in Fig. 1) is given by

dσ

d2k1dη1d2k2dη2
= α

2
s (4π)2

∫
z1 z̄1z2 z̄2

eik1·(z1−z̄1)+ik2·(z2−z̄2) (2.1)

×
∫

x1x2y1y2

Ai(x1− z1)Ai(z̄1− y1)A j(x2− z2)A j(z̄2− y2)
〈

ρ
a1(x1)ρ

a2(x2)ρ
b1(y1)ρ

b2(y2)
〉

P

×
〈[

U(z1)−U(x1)
]a1c[U†(z̄1)−U†(y1)

]cb1
[
U(z2)−U(x2)

]a2d[U†(z̄2)−U†(y2)
]db2
〉

T
,
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with
∫

z ≡
∫

d2z, U(x) the adjoint Wilson line at transverse position x and

Ai(x− y) =− 1
2π

(x− y)i

(x− y)2 =
∫ d2k

(2π)2 e−ik·(x−y) ki

k2 . (2.2)

〈· · ·〉P,T denote the averages on the projectile and target wave function of the projectile sources and
Wilson lines describing the rescattering with the target, respectively.

For the dilute projectile average, we consider pairwise contractions〈
ρ

a1(x1)ρ
a2(x2)ρ

b1(y1)ρ
b2(y2)

〉
P
=
〈

ρ
a1(x1)ρ

a2(x2)
〉

P

〈
ρ

b1(y1)ρ
b2(y2)

〉
P

+
〈

ρ
a1(x1)ρ

b1(y1)
〉

P

〈
ρ

a2(x2)ρ
b2(y2)

〉
P
+
〈

ρ
a1(x1)ρ

b2(y2)
〉

P

〈
ρ

a2(x2)ρ
b1(y1)

〉
P
, (2.3)

using a generalisation of the McLerran-Venugopalan model [7]〈
ρ

a(x)ρb(y)
〉

P
= δ

ab
µ

2(x,y) (2.4)

that results in dipole-dipole and quadrupole target averages, where µ2(x,y) is a distribution that
falls rapidly for |x+ y| > RP with RP the radius of the projectile describing the valence colour
charges in the projectile. For performing the target averages, we note that the cross section (2.1)
involves integration over all transverse coordinates, so the largest contribution comes from max-
imising the distances. In the Glasma graphs approximation, the Wilson lines are expanded to the
lowest order in the target fields and then pairwise contractions are performed. We follow here a
different strategy (see also [8, 9]), taking into account that the target ensemble must be colour neu-
tral and that in the CGC colour neutralisation takes place at distances 1/Qs with Qs the saturation
scale of the target, so the S-matrix becomes non zero for colour singlets of size > 1/Qs. Therefore,
the leading contribution (in powers of RPQs) comes from the 2n points in 〈· · ·〉T combined into n
singlets at distances as large as possible. We realise this idea defining〈

Uab(x)Ucd(y)
〉

T
= δ

ac
δ

bd 1
(N2

c −1)2

〈
tr [U(x)U†(y)]

〉
T
= δ

ac
δ

bd 1
N2

c −1
d(x,y), (2.5)

where
d(x,y)≡ 〈D(x,y)〉T , (2.6)

so

〈Q(x,y,z,v)〉T −→ d(x,y)d(z,v)+d(x,v)d(z,y)+
1

N2
c −1

d(x,z)d(y,v), (2.7)

〈D(x,y)D(z,v)〉T −→ d(x,y)d(z,v)+
1

(N2
c −1)2 [d(x,v)d(y,z)+d(x,z)d(v,y)] . (2.8)

The final result for a translationally invariant target can be organised in powers of the number
of colours Nc:

dσ

d2k1dη1d2k2dη2
= α

2
s (4π)2(N2

c −1)2
∫ d2q1

(2π)2
d2q2

(2π)2 d(q1)d(q2)

{
I0+

1
N2

c −1
I1+

1
(N2

c −1)2 I2

}
,

(2.9)
with I0 giving the uncorrelated emission of two gluons coming from the dipole-dipole terms, I1

giving Bose enhancement of the projectile wave function and HBT coming from the quadrupole
terms, and I2 Bose enhancement in the target wave function coming from the dipole-dipole terms
and Nc corrections to projectile Bose and HBT coming from the quadrupole terms.
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3. Three gluon correlations
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Figure 2: Graphical illustration of Eq. (3.1) with the vertical lines representing the rescatterings with the
target through Wilson lines.

The three gluon inclusive cross section (graphically shown in Fig. 2) is given by
dσ

d2k1dη1 d2k2dη2 d2k3dη3
= α

3
s (4π)3

∫
z1 z̄1z2 z̄2z3 z̄3

eik1·(z1−z̄1)+ik2·(z2−z̄2)+ik3·(z3−z̄3)

×
∫

x1y1x2y2x3y3

Ai(x1− z1)Ai(z̄1− y1)A j(x2− z2)A j(z̄2− y2)Ak(x3− z3)Ak(z̄3− y3) (3.1)

×
〈

ρ
a1(x1)ρ

a2(x2)ρ
a3(x3)ρ

b1(y1)ρ
b2(y2)ρ

b3(y3)
〉

P

×
〈(

Uz1−Ux1

)a1c1
(
U†

z̄1
−U†

y1

)c1b1
(
Uz2−Ux2

)a2c2
(
U†

z̄2
−U†

y2

)c2b2
(
Uz3−Ux3

)a3c3
(
U†

z̄3
−U†

y3

)c3b3

〉
T
.

Projectile averages done through pairwise contractions give rise to 15 terms which correspond
to triple dipole (ddd), dipole-quadrupole (dQ) and sextupole (X) target averages. For these we
follow the strategy explained in the previous Section which for the sextupole results in〈

X(x1,x′1,x2,x′2,x3,x′3)
〉

T
−→ d(x1,x′1)d(x2,x′2)d(x3,x′3)+d(x1,x′3)d(x2,x′1)d(x3,x′2)

+ d(x1,x′1)d(x2,x′3)d(x3,x′2)+d(x2,x′2)d(x3,x′1)d(x1,x′3)+d(x3,x′3)d(x1,x′2)d(x2,x′1)

+
1

N2
c −1

{
d(x1,x′1)d(x2,x3)d(x′2,x

′
3)+d(x2,x′2)d(x3,x1)d(x′3,x

′
1)+d(x3,x′3)d(x1,x2)d(x′1,x

′
2)

+ d(x2,x3)d(x1,x′3)d(x
′
1,x
′
2)+d(x3,x1)d(x2,x′1)d(x

′
2,x
′
3)+d(x1,x2)d(x3,x′2)d(x

′
3,x
′
1)

}
+

1
(N2

c −1)2

{
d(x1,x2)d(x3,x′1)d(x

′
2,x
′
3)+d(x2,x3)d(x1,x′2)d(x

′
3,x
′
1)+d(x3,x1)d(x2,x′3)d(x

′
1,x
′
2)

+d(x1,x′2)d(x3,x′1)d(x2,x′3)
}
. (3.2)

Again, the final result for a translationally invariant target can be organised in powers of Nc:

dσ

d2k1dη1 d2k2dη2 d2k3dη3
= α

3
s (4π)3 (N2

c −1)3
∫ d2q1

(2π)2
d2q2

(2π)2
d2q3

(2π)2 d(q1)d(q2)d(q3)

×
{

Iddd,0 +
1

N2
c −1

[
IdQ,1 + IdQ,2 + IdQ,3

]
+

1
(N2

c −1)2

([
Iddd,1 + Iddd,2 + Iddd,3

]
(3.3)

+
[
I′dQ,1 + I′dQ,2 + I′dQ,3

]
+
[
IX,1 + IX,2 + IX,3 + IX,4 + IX,5

])
+O

[
(N2

c −1)−3]+O
[
(N2

c −1)−4]} .
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This final result contains independent emission of 3 gluons (Iddd,0), independent emission of one
gluon and projectile BE and HBT of the other two (IdQ,i), independent emission of one gluon and
target BE of the other two (Iddd,i), Nc-suppressed independent emission of one gluon and projec-
tile BE of the other two (I′dQ,i), HBT of two gluons and projectile BE of other two (IX,1,2,3), and
projectile BE (IX,4) and HBT (IX,5) of the three gluons.

Summarising, by explicitly computing two and three gluon inclusive cross sections under the
mentioned target averaging procedure, we find that the two main effects contributing to correla-
tions, BE of the gluons in the projectile and target WFs, and HBT correlations of the final state
gluons, survive density corrections in the target, that correlations between all particles come from
the highest order Wilson line correlator, and that target BE correlations are suppressed by the num-
ber of colours with respect to projectile ones (at variance with what happens in the symmetric
Glasma graphs approach where both are of the same order in Nc).
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