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1. Introduction

Recent progress in the nuclear spin physics via polarization measurements is reviewed with
special emphases on three nucleon force effects, spin-isospin responses for unstable nuclei, and
new spin-isospin modes and applications to neutrino physics. This progress has been made possible
by the development of techniques such as heavy-ion charge exchange measurements, high quality
polarized beams and targets, and sophisticated theoretical calculations.

2. Three nucleon force effects

2.1 Three nucleon force and chiral effective field theory

Three nucleon force (3NF) effect in nuclear many body systems is one of the hottest topics
in nuclear physics. The first indication is the underbinding of theoretical calculations for 3H and
3He. Other indications are the binding and excitation energies for light nuclei. For example, in
the Green-function Monte Carlo (GFMC) calculations [1], the calculation with the two nucleon
forces (2NFs) is significantly underbinding compared with the experimental data. By introducing
the 3NFs, the calculations become close to the data. It should be noted that different 3NF models
such as Urbana [2] and Illinois [3] models give different predictions. Both forces include the so-
called Fujita-Miyazawa 3NF [4] and the repulsive term. For the Illinois force, the three-pion (3π)
ring diagrams are also considered [3], and give more attraction for neutron rich nuclei. Figure 1
shows a typical example for He isotopes. For 8He, the Illinois model (AV18+IL7) with 3π-ring
terms becomes more close to the experimental data. However, if we consider the general structure
of 3NFs, we need 22 structure functions even under some invariance conditions [5]. Therefore, a
systematic approach such as the chiral effective field theory (χEFT) is important.

Figure 2 shows the chiral expansion of nuclear forces [6]. The 2NF can be expanded as
shown in the 2nd column; with some parameters to be determined experimentally by NN and π-N
scattering data. Then, the 3NF appears at next-to-next leading order (N2LO) as shown in the 3rd
column. The left diagram corresponds to the 2π exchange Fujita-Miyazawa type, and its strength

Figure 1: GFMC energies of ground 0+ and excited 2+ states for He isotopes with AV18 (black lines),
AV18+UIX (blue lines), AV18+IL7 (red lines) Hamiltonians compared to experimental data (green lines)
[1].
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Long-range: LECs fixed from N data 

Two nucleon force Three nucleon force Four nucleon force

LO (Q0)

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

2 -1 ring 2

Illinois-type 3NF

appears at N3LO

2 LECs in 3NF at N2LO 

B.E. of 3H

c.s. minimum in Nd scattering 

Faddeev calc. frontier

Figure 2: Schematic of chiral nuclear forces (2NF, 3NF, and four nucleon force) up to N3LO [6]. Besides
the πN low-energy constants (LECs) ci, the 3NF diagrams at N2LO contain two additional LECs: CD and
CE . The 3π ring diagrams considered in the Illinois model [3] appear at N3LO.

is determined by 2NF parameters. In this way, 2NF and 3NF can be derived consistently. There
are another two diagrams for the 3NF at N2LO, and corresponding parameters, CD and CE , should
be determined independently by using the 3H binding energy and p-d scattering data [7]. Recently,
the Faddeev calculations using the chiral 2NF up to N4LO become possible [8]. Furthermore, the
calculations employing the chiral 2NF+3NF up to N2LO are also available [7].

2.2 T = 1/2 three nucleon force

Many experimental data for p-d scattering have been accumulated. Figure 3(a) shows typical
examples for the cross section data at 70 [9, 10], 135 [9–12], and 190 MeV [13]. The red curves
represent the Faddeev calculations with the chiral 2NF up to N4LO. Clear discrepancies are ob-
served at cross section minima at θc.m. ≈ 120◦. Epelbaum et al. [7] performed the calculations with
the chiral 2NF+3NF up to N2LO. Note that the 3NF parameters, CD and CE , have been determined
at 70 MeV with the 3H binding energy, and thus the results at higher energies are the parameter-free
predictions. It is found that 3NF effects can remove the discrepancies between experimental data
and theoretical calculations up to 135 MeV without adjustable parameter, and the discrepancies at
higher energies would be due to higher-order (> N2LO) effects.

Figures 3(b) and 3(c)–(e) represent the vector and tensor analyzing powers for p-d elastic
scattering, respectively, at 70 MeV (upper panels) [9, 10]. The red curves are the Faddeev calcu-
lations with the chiral 2NF up to N4LO. Except for the tensor analyzing powers T21 and T22 at
backward angles, a reasonable description within the theoretical uncertainty has been observed.
Large discrepancies in T21 and T22 show the importance of the 3NF effects for these observables.
Recent calculations with the chiral 2NF+3NF up to N2LO [7] also suggest the importance of the
higher-order (> N2LO) 3NF effects.
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Figure 3: The cross sections [(a)] and the vector [(b)] and tensor [(c)–(e)] analyzing powers for p-d elastic
scattering at 70 (upper panels) [9, 10], 135 (middle panels) [9–12], and 190 MeV (bottom panels) [13]. The
red curves represent the Faddeev calculations with the chiral 2NF up to N4LO [13].

Complete calculations for three-nucleon scattering states are limited up to N2LO as of this
moment. At the next N3LO, there is no adjustable parameter. However, theoretically, large next
fourth-order contributions are expected due to the ∆ excitation [14]. Thus we should go to this
order, and then there appear 10 new parameters [15]. In order to determine these parameters,
high-precision p-d scattering data are needed in wide energy region for partial-wave analysis [6].

The middle and bottom panels of Fig. 3 show the cross sections [(a)] and the vector [(b)] and
tensor [(c)–(e)] analyzing powers for p-d elastic scattering at 135 [9–12] and 190 MeV [13], re-
spectively. The red curves represent the predictions with the chiral 2NF up to N4LO. At these
higher energies, the calculations generally different from the data at backward angles where 3NF
effects become significant [16]. These high-precision data would be useful to determine the pa-
rameters for 3NFs at N4LO. However, it should be noted that the total isospin T is limited to 1/2
for the p-d scattering. Thus the four nucleon system such as p-3He is attracting more attention for
investigating the isospin T = 3/2 3NF.

2.3 T = 3/2 three nucleon force

Recently, Viviani et al. [17] have succeeded the four-body calculations including the 3NF
for p-3He at 5.54 MeV. The analyzing power data and calculations suggest the importance of the
3π-ring 3NF included in the Illinois model [3]. Since this kind 3NF has a different isospin depen-
dence compared with the Fujita-Miyazawa 3NF, the p-3He data seem to be important to access the
isospin dependence of the 3NFs. Thus it is important experimentally to measure these polarization
observables at higher energies where the 3NF effects become more significant.

Watanabe et al. [18] have succeeded to measure the 3He analyzing power Ay(
3He) for p-3He at

70 MeV. Figure 4 shows their preliminary results with the predictions employing the CD-Bonn [19]
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Figure 4: The 3He analyzing power Ay(
3He) for p-3He at 70 MeV [18]. The error bars and boxes rep-

resent the statistical and systematic uncertainties, respectively. The blue and red lines are the theoretical
calculations based on the CD-Bonn [19] and INOY (Doleschall) [20] 2NFs, respectively.

and INOY (Doleschall) [20] 2NFs. Significant discrepancies are observed at angles with minimum
(θc.m. ≈ 80◦) and maximum (θc.m. ≈ 140◦) Ay(

3He) values. At a low energy of 5.54 MeV, the 3NF
effect is only about 0.05 [17]. The present data suggest the increase of the 3NF effect to about 0.2.
Even though we must await a calculation including the 3NF in near future, these experimental data
would be helpful to investigate the isospin T = 3/2 3NF.

3. Spin-isospin responses

3.1 Gamow-Teller resonance

A giant resonance (GR) is a collective oscillation mode of an atomic nucleus and also a fea-
ture of quantum many-body systems [21]. At low momentum transfers, the Gamow-Teller (GT)
giant resonance (GTGR) is excited and the relevant repulsive interaction is often described by the
Landau-Migdal parameter g′ 1 [22, 23]. The Landau-Migdal parameter g′ is a key parameter to
understand the GT response, and it is almost constant for stable nuclei [24]. Recently, the GT
responses for unstable nuclei have been extensively studied by using the inverse (p,n) reaction at
NSCL [25, 26] and RIBF [27, 28]. The GT resonances (GTRs) have been successfully observed
for very neutron rich nuclei such as 8He [27] and 12Be [28]. Furthermore, the GTGR has been
successfully observed for 132Sn [29]. These nuclei are far from stability, and thus valuable for
understanding the isospin dependence of the GT responses.

3.1.1 132Sn

The 132Sn is the double-magic nucleus between well-studied 90Zr and 208Pb nuclei. Therefore,
the data are very useful to benchmark the nuclear models in medium-heavy region. Furthermore,

1g′ = g′NN in Ref. [24].
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Figure 5: (Left) the cross sections and the results of the MDA for the 132Sn(p,n) reaction at 216MeV/u
[29]. (Right) GT strength distribution in 132Sn compared with the RPA calculations employing different g′

values of 0.30, 0.50, 0.68, and 0.90.

Sn has a very-long isotope chain, and thus is suitable to investigate the isospin dependence of the
GT peak which is sensitive to the Landau-Migdal parameter g′.

The experiment was performed at RIBF in RIKEN. The secondary 132Sn beam bombarded an
11 mm thick liquid hydrogen target, and the neutrons from the (p,n) reaction were measured by
the WINDS neutron detectors [30]. The resulting Sb isotopes were momentum-analyzed by the
SAMURAI spectrometer [31] with wide momentum acceptance of about 50%.

The experimental results for the cross sections at θc.m. = 2◦–5◦ are shown in Fig. 5. The
data have been decomposed to Gamow-Teller (∆L = 0), dipole (∆L = 1), and quadrupole (∆L = 2)
components by multi-pole decomposition (MDA). At most forward angle, the prominent GTGR
is clearly seen at about 16 MeV. Furthermore, the spin-dipole resonance is also found at about 25
MeV. The GT cross section σ∆L=0(q,ω) has been converted to the GT strength B(GT) by using the
following proportionality relation:

σ∆L=0(q,ω) = σ̂GTF(q,ω)B(GT), (3.1)

with the GT unit cross section σ̂GT and the (q,ω) dependence factor F(q,ω).
The right panel of Fig. 5 compares the experimental GT strength distribution with theoretical

predictions for different Landau-Migdal parameters g′. The experimental data are best reproduced
with the g′ value of 0.68 shown by black. This value is close to the values evaluated from the
90Zr [32] and 208Pb [33] data. Therefore, the result shows the constancy of g′ in the wide nuclear
chart region up to isospin asymmetry (N − Z)/A of 0.24. Note that the observed total strength
corresponds to about 56% of the sum-rule value of 3(N −Z) = 96. This value is consistent with
the systematics for stable nuclei [24]. Since the excitation energy is limited up to 25 MeV, a future
study for higher excitations is interesting to search for the missing strength.
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Figure 6: The energy difference between GTR and IAS, EGT −EIAS, as a function of isospin asymmetry
(N −Z)/A. The data for stable nuclei with (N −Z)/A ≤ 0.21 are taken from Ref. [34]. The red and blue
circles represent the results for 8He [27] and 12Be [28], respectively. The bands are the theoretical predictions
assuming the constant g′ of 0.6±0.1.

3.1.2 8He and 12Be

A neutron-rich nucleus 8He has the largest isospin asymmetry (N −Z)/A of 0.5, and 12Be has
also a large asymmetry of 0.33. Therefore, for these very neutron-rich nuclei, it is very interesting
to investigate how to change the repulsive spin-isospin interaction, g′, by observing the GTRs.

The energy difference between GTR and isobaric-analog state (IAS) is given by [34]

EGT −EIAS = ∆Els + const.(g′− f ′)
(N −Z)

A
, (3.2)

with Landau-Migdal parameters g′ and f ′. Thus the energy differences would be proportional to
isospin asymmetry. Figure 6 shows the results for stable nuclei from Zr to Pb. The data support
the constancy of g′ of about 0.6, and the curvature is due to the shell effect in ∆Els [35]. Therefore,
experimental data for 8He and 12Be are interesting to check whether the constancy of g′ is hold or
not up to a large isospin-asymmetry of 0.5.

First (p,n) measurements for these nuclei in inverse kinematics have been successfully per-
formed at RIBF in RIKEN. In both cases, GTRs are clearly observed, and the energy differences
from the IAS were determined as −2.5MeV for 8He [27] and −1.2MeV for 12Be [28].

In Fig. 6, new data for 8He and 12Be are shown by red and blue circles, respectively. The
light red and blue bands correspond to the theoretical predictions assuming the constant Landau-
Migdal parameter g′ of 0.6± 0.1 for He and Be isotopes. The difference is due to the different
spin-orbit splitting between He and Be. Both data are consistent with the predictions; therefore,
the Landau-Migdal parameter g′ would be constant up to isospin asymmetry (N −Z)/A of 0.5. In
these neutron-rich light nuclei, halo and cluster effects might affect the resonance energies. Thus
we need further theoretical investigations to confirm the constancy of the residual interaction.
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Figure 7: The cross section (left) and the monopole (∆L= 0) cross section (right) for the 90Zr(12N,12C) [37]
and 90Zr(t,3He) [36] reactions at 0◦. The red histograms are the relevant (p,n) [39] and (n, p) [40] data at
200 and 300 MeV. Hartree-Fock plus random-phase approximation (HF-RPA) calculations using the Skyrme
effective interaction SGII+Te3 [41] and T43 [42] are shown by the green and blue lines, respectively.

3.2 Isovector spin-monopole resonance

The isovector spin-monopole (IVSM) is a breathing mode including spin-isospin degrees of
freedom and its operator, OIVSM

± (µ) ∑k t±(k)σµ(k)r(k)2, has a r2 term. There is the model-
independent sum-rule for the total strengths S± [21]. The difference of the total strength in the
β− and β+ directions is given by

S−−S+ = 3(N ⟨r4⟩n −Z ⟨r4⟩p), (3.3)

with the neutron and proton distributions in nuclei. This sum-rule value is sensitive to the neutron
skin because of the fourth-power for r. Therefore, the IVSM would be useful to obtain the neutron
skin thickness and to constrain the nuclear matter equation-of-state.

Experimentally, an appropriate probe sensitive to the IVSM mode should be selected. One
promising tool is the heavy-ion charge exchange reactions such as using triton [36] and nitrogen
[37] beams. In the radial dependence of the transition density, there is a node near the surface, and
thus the cancellation between the inner and surface regions occurs for the nucleon charge exchange
reaction [38]. However, due to the strong absorption, heavy-ion-induced reactions probe only the
surface region, and thus there is no cancellation. Therefore, the IVSM mode would be effectively
excited.

The left panel of Fig. 7 shows the experimental result for the β− direction on 90Zr [37] as a
function of excitation energy. For comparison, the (p,n) spectrum at 200 MeV [39] is also shown
by the red histogram. The GTGR at about 10 MeV is clearly observed for both cases. In contrast to
the (p,n) case, there is an another resonance at about 25 MeV. This resonance would be the IVSM
resonance and the data clearly demonstrate the suitability of this probe for the monopole resonance.
The right panel shows the result for the β+ direction [36]. In this case, the significant enhancement

7



P
o
S
(
S
P
I
N
2
0
1
8
)
0
0
5

Nuclear Spin Physics via Polarization Measurements T. Wakasa

from the (n, p) data [40] is also observed at about 20 MeV, and this enhancement is consistent with
the theoretical predictions using the Skyrme effective interactions [41, 42].

From these cross sections, the monopole strengths are deduced by using the empirical pro-
portionality relation similar to Eq. (3.1) between the strength and the cross section. The finally
obtained integrated monopole strengths are

S− = (25±6)×103 fm4, S+ = (16±6)×103 fm4. (3.4)

Thus the spin-monopole sum-rule value becomes about 9×103 fm4, and the neutron skin thickness
can be deduced as δnp = 0.10± 0.16fm. The uncertainty is relatively large; however, the present
value is consistent with other works [43, 44]. The present accuracy is limited by both the exper-
imental statistics and the theoretical uncertainty. Thus the future experiment with more intense
beams and theoretical investigations would enable us to obtain more accurate information about
the IVSM mode.

4. New spin-isospin modes and applications to neutrino physics

4.1 0νββ decay and double charge-exchange reaction

The spin-isospin responses are also important in relation to zero-neutrino (0ν) double-beta
(ββ ) decay. The relation between the 0νββ decay half-life T 0νββ

1/2 and the neutrino effective mass
⟨mν⟩ is given by [

T 0νββ
1/2 (0+ → 0+)

]−1
= G0νM0νββ

(
⟨mν⟩
me

)2

, (4.1)

and thus we need the nuclear matrix element M0νββ to deduce ⟨mν⟩. Because we could not obtain
this nuclear matrix element experimentally, we need nuclear structure calculations to obtain M0νββ .
There are several nuclear-model calculations from 48Ca to 150Nd, and the model dependence is
significantly large by a factor of two [45]. One candidate for the experimental constraint to M0νββ

is the double GT (DGT) excitation by double charge-exchange (DCX) reaction, since the relevant
operators are very similar as follows except for the neutrino potential VGT:

Ô0ν
GT = ∑

i< j
VGTσiσ jτ−

i τ−
j , ÔDCX

GT = ∑
i< j

[σiτ−
i ×σ jτ−

j ]
0. (4.2)

Theoretically, almost linear correlation between 0ν and DGT matrix elements is predicted [45];
therefore, DCX reactions would provide the information on M0νββ experimentally.

The DCX 40Ca(18O, 18Ne)40Ar reaction was measured at 270 MeV at INFN-LNS [46], and
the 40Ca(0+)→ 40Ar(0+) transition has been clearly observed. This transition includes both DGT
and double Fermi (DF) transitions, since both transitions can excite the 0+ state with ∆L = 0. Each
contribution can be factorized as

σ(0◦) = σDGT +σDF = σ̂DGTFDGTBP(DGT)BT (DGT)+ σ̂DFFDFBP(DF)BT (DF), (4.3)

where σ̂ is the so-called unit cross section and BP and BT are projectile and target transition
strengths, respectively. Under the following assumption between DGT and DF transitions:

B(DGT) : B(DF) = ∑
m

B(GT−)B(GT+) : ∑
m

B(F−)B(F+), (4.4)

8
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Figure 8: DGT strength distribution of 48Ca to 48Ti for λ = 0 (0+ → 0+) [52] with the p f -shell GXPF1B
nuclear interaction [53].

the nuclear matrix element for 40Ca can be evaluated as M0νββ (40Ca) = 0.37±0.18. Then, by cor-
recting the Pauli blocking effects, the matrix element for 48Ca can be estimated as M0νββ (48Ca) =
2.6± 1.3 [46]. This result is consistent with the theoretical prediction of 2.28 [47], and thus the
reaction analysis seems to be reliable. Although we need further investigations to reduce the un-
certainty, this method would be useful to constrain the 0νββ decay nuclear matrix elements exper-
imentally.

4.2 Double GT resonance

The two-neutrino (2ν) ββ (2νββ ) decay nuclear matrix elements M2νββ deduced from the
half-life T 2νββ

1/2 exhaust only about 0.1% of the sum-rule value [48] and the situation is similar to
delay of the single beta-decay. Thus we can expect naively that the missing strength would be
found as the DGT resonance predicted thirty years ago [49]. For the double IAS, the (π+,π−)

reaction successfully observed at Ex = 17.38MeV [50]. However, this probe is almost insensitive
for the excitation of the double spin-flip GT state.

Recently, new idea to use the heavy-ion DCX reaction has been realized at RCNP by using
the 12C beam [51]. The outgoing 12Be particles from the DCX reaction on 48Ca were momentum-
analyzed by the Grand-Raiden spectrometer. The final 0+ state of 12Be was identified by gamma-
ray tagging. The projectile transition strength is large and thus the DGT state could be efficiently
excited. Two prominent peaks have been observed at Ex ≈ 17 and 27 MeV. The lower peak is
relatively narrow, and thus would be the one-phonon single GT resonance. The other peak is more
significant and broad, and thus a candidate of the two-phonon DGT resonance.

Figure 8 shows the shell-model prediction [52] for the DGT strength with the p f -shell GXPF1B
nuclear interaction [53]. The calculation reasonably reproduces the experimentally observed dou-
ble peak structure. Furthermore, the peak positions are consistent with the experimental data. The-
oretically, the DGT distribution is sensitive to the paring correlation, and the M0νββ is also sensitive
to this correlation [52]. The present data suggest the small paring correlation. The experimental

9
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data are still preliminary; however, this heavy-ion DCX reaction would be useful to constrain the
theoretical calculations for M0νββ , and also to observe the DGT resonance.

5. Summary and outlook

Recent progress in the nuclear spin physics was reviewed. For 3NF effects in few nucleon sys-
tems, high quality data are accumulating for various systems and spin observables. At the moment
the calculations based on the χEFT are at N2LO for the 3NFs, and there are some discrepancies be-
tween experimental data and calculations. Thus the chiral expansion to the fourth-order is required,
and we need both more systematic data for p-d elastic scattering for partial-wave analysis and the
data for four nucleon systems for investigating the isospin T = 3/2 3NFs. For the spin-isospin
responses, the GTRs are observed both for very neutron rich nuclei such as 8He and the double-
magic nucleus of 132Sn. These results suggest the constancy of the spin-isospin residual interaction
in wide nuclear chart region for mass number A and isospin-asymmetry (N − Z)/A. However,
we need further investigations especially for the total strength and higher multipole modes such
as the spin-dipole response. For heavy-ion induced reactions, the IVSM resonances are clearly
observed and the sum-rule value would provide another way to obtain the neutron skin thickness.
Furthermore, double charge-exchange reactions could give a valuable constraint on the 0νββ de-
cay nuclear matrix elements, and also very useful to observe new collective motions such as the
DGT resonance.
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