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1. Introduction

Dispersion Relations (DRs) have seen various applications to study the electromagnetic
structure of hadrons. In particular, DRs for Compton scattering processes, with both real
and virtual photons, have been proven to be an useful tool for the prediction and extraction
from experimental data of low-energy properties of hadron systems [1–6]. More recently,
the dispersion formalism has been extended to describe the virtual Compton scattering
process in the deep inelastic region [7–11]. In particular, it was shown that the amplitudes
for Deeply Virtual Compton Scattering (DVCS) satisfy subtracted DRs at fixed t with the
subtraction function defined by the D-term Form Factor (FF) [9, 10].

The D-term FF was originally introduced to complete the parametrization of the
Generalized Parton Distributions (GPDs) in hard exclusive reactions in terms of double
distributions, and restore the polynomiality property of the singlet moments of unpolarized
GPDs [12]. On the other side, theD-term FF enters the parametrization of the non-forward
matrix element of the nucleon Energy-Momentum Tensor (EMT) and, as such, provides
the key to introduce mechanical properties of the nucleon [13,14].

Here we review the dispersive representation of the D-term FF in terms of DRs in the
t-channel, as originally proposed in Ref. [15], providing a microscopic interpretation of the
physical content of the D-term FF in terms of t-channel exchanges with the appropriate
quantum numbers.

2. t-channel dispersion relations for the D-term FF

We consider the DVCS process γ∗(q)N(p)→ γ(q′)N(p′). The familiar Mandelstam
variables are s = (p+ q)2, t = (q− q′)2, u = (q− p′)2, and are constrained by s+u+ t =
2M2

N −Q2, with MN the nucleon mass and Q2 =−q2.
We consider the Bjorken regime, where the photon virtuality Q2 and s are large, and

−t� s,Q2. We discuss here the use of DRs for the DVCS amplitude related to the GPD E

for unpolarized quarks in a transversely polarized nucleon target. This amplitude, denoted
as F , is function of the crossing variable ν = (s−u)/4MN , t, and Q2. In the ν− t plane at
fixed Q2, F satisfies the following fixed-t subtracted DR [9–11]:

F q(ν,t) = F q(0, t) + ν2

π

∫ ∞
ν0

dν ′2

ν ′2
ImF q(ν ′, t)
ν ′2−ν2 , (2.1)

where ν0 = Q2/4MN . The subtraction function F q(0, t) can be related to the D-term as
follows

F q(0, t) = 2
∫ +1

−1
dzD

q(z, t)
1−z = 4D(t). (2.2)

Using the expansion of the D-term D(z, t) in terms of Gegenbauer polynomials, one obtains
the following series for the D-term FF:

Dq(t) =
∞∑
n=1
nodd

dqn(t). (2.3)
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The dispersive representation for the D-term FF D(t) of Eq. (2.2) can be obtained by
applying unsubtracted DRs in the variable t:

F q(0, t) = 1
π

∫ +∞

4m2
π

dt′ ImtF
q(0, t′)

t′− t
+ 1
π

∫ −a
−∞

dt′ ImtF
q(0, t′)

t′− t
. (2.4)

The second integral in Eq. (2.4) extends from −∞ to −a=−2(m2
π+2MNmπ)−Q2. As we

are interested in evaluating Eq. (2.4) for large Q2 values and small (negative) values of t
(|t| � a), the integral from −∞→−a is suppressed, and will be neglected. The imaginary
part in the integral from 4m2

π→+∞ in Eq. (2.4) is saturated by the possible intermediate
states for the t-channel process, which lead to cuts along the positive-t axis. For low values
of t, the t-channel discontinuity is dominated by ππ intermediate states. Consequently, we
shall saturate the integral in Eq. (2.4) by the contribution of the γ∗γ→ ππ→NN̄ channel,
which turns out to be a good approximation for small t. The γ∗γ→ ππ subprocess at large
Q2 and small t can be described in a factorized form as the convolution of a short-distance
contribution, γ∗γ → qq̄, perturbatively calculable, and nonperturbative matrix elements
which describe the exclusive fragmentation of a qq̄ pair into two pions and are given in
terms of two-pion Generalized Distribution Amplitudes (GDAs). We use a partial wave
expansion of the GDAs, restricting ourselves to the contribution of the S- and D-wave
amplitudes. This corresponds to consider the term with n= 1 in Eq. (2.3), i.e. to evaluate
only the contribution from the FF d1(t)q in Eq. (2.2). Furthermore, the two-pion GDAs
are calculated through dispersion relations using the Omnès representation which was first
discussed in Ref. [13]. This information is then combined with the ππ → NN̄ partial
wave amplitudes, which are determined by analytical continuation of the πN scattering
amplitudes [16]. As final result, we obtain

ImtF
q (ππ) = 3MNpπ

2
√
tp2
t

Bq
12(0)

[
(3C−β2)f0(t)f0∗

+ (t) + (pπpt)2β2f2(t)f2∗
+ (t)

]
, (2.5)

where pt =
√
t/4−M2

N and pπ =
√
t/4−m2

π. In Eq. (2.5), the Omnès functions f0,2 and
the πN amplitudes f0,2

+ are calculated in terms of the same ππ phase shifts. Furthermore,
the constants C and B12 come from the Gegenbauer expansion of the two-pion GDAs. C
is taken from the instanton model at low energies [17], giving C = 1 + bm2

π +O(m4
π) with

b≈−1.7 GeV−2, and the coefficient B12(0) is obtained using the crossing relations between
the quark 2πDA’s and the corresponding parton distributions in the pion, i.e.

Bq
12(0) = 10

9

∫
dxx 1

Nf

∑
f

[qfπ(x) + q̄fπ(x)]. (2.6)

We note that in Eq. (2.5), the dependence on the renormalization scale enters only through
the coefficient Bq

12 evaluated at t= 0, and therefore is disjoined from the t dependence of
the amplitude. Furthermore, the coefficients Bq

12 evolve in the same way as the quark
momentum fraction in the pion, in accordance with Eq. (2.6).
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3. Results

The d1(t) FF is particularly interesting, as it enters the parametrization of the EMT
of QCD. In particular, the relation to the EMT FF reads as D(t) = 4

5d1(t). The physical
content encoded in the EMT FFs is revealed in the so-called Breit frame [13, 14] and has
been discussed recently in other frames in Refs. [18, 19]. Working in the Breit frame, the
D(t) can be related to the spatial distribution of shear forces s(r) and pressure p(r) as

p(r) = 1
3

∫ d3~∆
2m(2π)3 e

−i~∆·~rP0(cosθ) [tD(t)] , s(r) = 3
4

∫ d3~∆
2m(2π)3 e

−i~∆·~rP2(cosθ) [tD(t)] ,

(3.1)

where t= ~∆2. The relation for the shear forces holds for quark and gluon separately, while it
is defined only for the total system in the case of the pressure. Thanks to Eq. (3.1), the EMT
FF introduces to the mechanical properties of the nucleon and reflects the internal dynamics
of the system through the distribution of forces. Requiring that for the mechanical stability
of the system the corresponding force must be directed outwards, one expects the local
criterion 2s(r) + p(r) > 0, which implies that the D-term for any stable system must be
negative, D < 0, as confirmed in models [20–22], calculations from DRs [15] and lattice
QCD [23] for the nucleon. Another consequence of the EMT conservation is the von Laue
condition, which shows how the internal forces balance inside a composed particle, i.e.,∫ ∞

0
p(r)r2dr = 0. (3.2)

This relation implies that the pressure must have at least one node. In all model studies
so far it was found that the pressure is positive in the inner region, and negative in the
outer region, with the positive sign meaning repulsion towards outside and the negative
sign meaning attraction directed towards inside.

Recently, an analysis of the published JLab data measured at 6 GeV [26, 27] has pro-
vided experimental information on the total quark contribution to the D(t) FF of the nu-
cleon [24], as shown in Fig. 1 (squared in the left panel, referring to a scale of µ2 = 1.5 GeV2),
in comparison with the KM15 fit [25] and calculations from DRs [15] and lattice QCD [23]
(all to the scale of 4 GeV2) and scale independent results from the bag [20], chiral quark
soliton [21] and Skyrme [22] models. The D-term parameters fitted to the JLab data, with
the assumption of a negligible gluon contribution, were used to plot the radial pressure
distribution shown by the black solid curve in the right panel of Fig. 1. The correspond-
ing estimated uncertainties are displayed as the light-green shaded area. The blue area
represents the uncertainties from all the data that were available before the 6-GeV exper-
iments, and the red shaded area shows projected results from future JLab experiments
at 12 GeV. Within the uncertainties of the analysis, the distribution satisfies the stability
condition (3.2), with a zero crossing near r = 0.6 fm.

The first extraction of the pion EMT form factor from the BELLE data on γ∗γ → π0π0

was reported in Ref. [28]. The result at zero momentum transfer isDQ(0)≈−0.75, in agree-
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Figure 1: Left (from Ref. [14]): The DQ(t) FF from the JLab analysis [24], in comparison with the
KM15 fit [25] and calculations from DRs [15] and lattice QCD [23], and results from the bag [20],
chiral quark soliton [21] and Skyrme [22] model. Right (from Ref. [24]): quark contribution to the
pressure distribution r2p(r) as function of the radial distance r from the centre of the proton.

ment with the soft pion theorem D =−1, given that the extracted value does not include
the gluon contribution. The extraction also shows that D-term is definitely negative, as
expected for the mechanical stability of the pion.
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