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The cross section of the exclusive π0 and η electroproduction reaction ep→ e′p′π0/η was mea-
sured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross
sections d4σ/dtdQ2dxBdφ and structure functions σU = σT + εσL,σT T and σLT , as functions
of t were obtained over a wide range of Q2 and xB. At low t, both π0 and η are described rea-
sonably well by Generalized Parton Distributions (GPDs) model in which chiral-odd transversity
GPDs are dominant. Generalized form factors of the transversity GPDs 〈HT 〉π,η and 〈ĒT 〉π,η

were directly extracted from the experimental observables. The combined π0 and η data opens
the way for the flavor decomposition of the transversity GPDs. The first ever demonstration of
this decomposition was done for the transversity GPDs HT and ĒT . GPD ĒT is connected with
the density of the polarized quarks in an unpolarized nucleon in the impact parameter space. The
spin density of polarized u and d-quarks was evaluated for different values of Feynman x from
the GPD model tuned to described the experimental data.
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1. Introduction

Understanding nucleon structure in terms of the fundamental degrees of freedom of Quantum
Chromodynamics (QCD) is one of the main goals in the theory of strong interactions. In recent
years it became clear that exclusive reactions may provide information about hadron structure en-
coded in so-called Generalized Parton Distributions [1, 2] (GPDs). For each quark flavor q there
are eight GPDs. Four correspond to parton helicity-conserving (chiral-even) processes, denoted by
Hq, H̃q, Eq and Ẽq, and four correspond to parton helicity-flip (chiral-odd) processes [3, 4], Hq

T ,
H̃q

T , Eq
T and Ẽq

T . The GPDs depend on three kinematic variables: x, ξ and t. In a symmetric frame,
x is the average longitudinal momentum fraction of the struck parton before and after the hard in-
teraction and ξ (skewness) is half of the longitudinal momentum fraction transferred to the struck
parton. The skewness can be expressed in terms of the Bjorken variable xB as ξ ' xB/(2− xB).
Here xB = Q2/(2p ·q) and t = (p− p′)2, where p and p′ are the initial and final four-momenta of
the nucleon.

When the theoretical calculations for longitudinal virtual photons were compared with the
JLab π0 and η data [5, 6, 7] they were found to underestimate the measured cross sections by
more than an order of magnitude in their accessible kinematic regions. The failure to describe the
experimental results with quark helicity-conserving operators stimulated a consideration of the role
of the chiral-odd quark helicity-flip processes. Deeply virtual meson electroproduction (DVMP),
and in particular π0 production in the reaction ep→ e′p′π0, was identified [8, 9, 10] as especially
sensitive to the quark helicity-flip subprocesses. During the past few years, two parallel theoretical
approaches - [8, 11] (GL) and [9, 10] (GK) have been developed utilizing the chiral-odd GPDs
in the calculation of pseudoscalar meson electroproduction. The GL and GK approaches, though
employing different models of GPDs, lead to transverse photon amplitudes that are much larger
than the longitudinal amplitudes.

2. Definition of structure functions

The unpolarized reduced meson cross section is described by 4 structure functions σT , σL,
σT T and σLT :

2π
d2σ(γ∗p→ pπ0)

dtdφ
=

dσT

dt
+ ε

dσL

dt
+ ε

dσT T

dt
cos2φ +

√
2ε(1+ ε)

dσLT

dt
cosφ . (2.1)

References [10, 11] obtain the following relations for unpolarized structure functions:

dσL

dt
=

4πα

k′
1

Q4

{(
1−ξ

2)∣∣〈H̃〉∣∣2−2ξ
2Re
[
〈H̃〉∗〈Ẽ〉

]
− t ′

4m2 ξ
2 ∣∣〈Ẽ〉∣∣2} (2.2)

dσT

dt
=

4πα

2k′Q4

[(
1−ξ

2) |〈HT 〉|2−
t ′

8m2 |〈ĒT 〉|2
]

(2.3)

dσLT

dt
=

4πα√
2k′Q4

ξ

√
1−ξ 2

√
−t ′

2m
Re
[
〈HT 〉∗〈Ẽ〉

]
(2.4)

dσT T

dt
=

4πα

k′Q4
t ′

16m2 |〈ĒT 〉|2 (2.5)
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Figure 1: (Color online) The extracted structure functions vs. t for the π0 (left column) and η (right
column). The top row presents data for the kinematic point (Q2 =1.38 GeV2, xB=0.17) and bottom row
for the kinematic point (Q2 =2.21 GeV2, xB=0.28). The data and curves are as follows: black circles -
dσU/dt = dσT/dt+εdσL/dt, blue triangles - dσT T/dt, red squares - dσLT/dt. The error bars are statistical
only. The gray bands are our estimates of the absolute normalization systematic uncertainties on dσU/dt.
The curves are theoretical predictions produced with the GPG model of Goloskokov and Kroll [10].

Here m is the mass of the proton, t ′= t−tmin, where |tmin| is the minimum value of |t| corresponding
to θπ = 0, k′(Q2,xB) is a phase space factor and ĒT = 2H̃T +ET . The brackets 〈HT 〉 and 〈ĒT 〉 denote
the convolution of the elementary process γ∗q→ qπ0 with the GPDs HT and ĒT . They are called
them generalized form factors.

3. Experimental data

The cross section of the reaction ep→ ep(π0/η) measured by the CLAS collaboration at Jlab
in bins of Q2, xB, t and φ were published in Refs. [5, 6, 7]. Structure functions σU = σT +εσL, σLT

and σT T have been extracted from the angular distributions. These functions were compared with
the predictions of the GPD models [10, 11]. The result confirmed that the measured unseparated
cross sections are much larger than expected from leading-twist handbag calculations which are
dominated by longitudinal photons. As an example, the comparison of the π0 and η structure

2
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Figure 2: (Color online) Data points: CLAS. Top left: |〈HT 〉π |, top right: |〈ĒT 〉π |, bottom left: |〈HT 〉η |,
bottom right: |〈ĒT 〉η | as a function of -t for different kinematics: (Q2=1.2 GeV 2, xB=0.15) black, (Q2=1.8
GeV2, xB=0.22) red, (Q2=2.2 GeV2, xB=0.29) blue, (Q2=2.7 GeV2, xB=0.34) magenta.

functions is shown in Fig. 1 for two kinematical bins in xB and Q2. The structure functions σU

and σT T for η are, respectively, factors of 2.5 and 10 smaller than for π0. However, the GK GPD
model [10] (curves) follows the experimental data. Taken together, the π0 and η results stringthen
the statement about the transversity GPD dominance in the pseudoscalar electroproduction process.

4. Generalized form factors

The squared magnitudes of the generalized form factors |〈HT 〉|2 and |〈ĒT 〉|2 may be directly
extracted from the experimental data (see Eqs. 2.3 and 2.5 ) in the framework of GPD models.

|〈ĒT 〉π,η |2 =
k′Q4

4πα

16m2

t ′
dσ

π,η
T T

dt
(4.1)

|〈HT 〉π,η |2 =
2k′Q4

4πα

1
1−ξ 2

[
dσ

π,η
T

dt
+

dσ
π,η
T T

dt

]
. (4.2)

Figure 2 presents the modulus of the generalized form factors |〈HT 〉π |, |〈ĒT 〉π |, |〈HT 〉η | and |〈ĒT 〉η |
for 4 different kinematics. Note the dominance of the |〈ĒT 〉| over |〈HT 〉| for both π0 and η . Gen-
eralized form factors 〈HT 〉π and 〈ĒT 〉π are shown in more detail in Fig. 3. The 〈ĒT 〉π formfactor
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has steeper t-dependemce than 〈HT 〉π . The t-slope parameters, obtained by an exponential fit of the
form ebt , are b(〈ĒT 〉)=1.27 GeV−2 and b(〈HT 〉)=0.98 GeV−2.

5. Flavor decomposition

In electroproduction of π0 and η mesons the GPDs Fi appears in the following combinations

Fπ
i =

1√
2
[euFu

i − edFd
i ] (5.1)

Fη

i =
1√
6
[euFu

i + edFd
i −2esFs

i ] (5.2)

The q and q̄ GPDs contribute in the quark combinations Fq
i −F q̄

i . Hence there is no contribu-
tion from the strange quarks if we assume that Fs

i ' F s̄
i . For flavor decomposition we have to

take into account the decay constants fπ and fη , the chiral condensate constants µπ0 =2.57 GeV,
µ1 =0.958 GeV and µ8=2.32 GeV, and the contribution from singlet and octet η states [10].

Fη

i = Fπ
i

(
cosθ8−

√
2

µ1

µ8

f1

f8
sinθ1

)
f8

fπ0

µ8

µπ0
=

F8
i

kη

, (5.3)

where the mixing angles are: θ8 = −21.2o and θ1 = −9.2o. The octet and singlet wave functions
are very similar and the decay constants are close as well f8 = 1.26 fπ and f1 = 1.17 fπ . The overall
factor for the η meson is kη = 0.863. Using eu =

2
3 and ed =−1

3 we will end up with

Fπ
i =

1
3
√

2
[2Fu

i +Fd
i ] (5.4)

kηFη

i =
1

3
√

6
[2Fu

i −Fd
i ]. (5.5)

Experimentally we have access only to the |〈Fπ
i 〉|

2 and
∣∣〈Fη

i

〉∣∣2 (see Eq. 4.1-4.2). The final equation
for the 〈HT 〉 convolution reads

1
18

∣∣2〈HT 〉u + 〈HT 〉d
∣∣2 = |〈HT 〉π |2 (5.6)

1
54

∣∣2〈HT 〉u−〈HT 〉d
∣∣2 = k2

η |〈HT 〉η |2 . (5.7)

and simular equations for 〈ĒT 〉.
The solution of these equations will lead to the flavor decomposition of the generalized form

factors 〈HT 〉u and 〈HT 〉d as well as 〈ĒT 〉u and 〈ĒT 〉d . However, the convolution integrals have real
and imaginary parts. So it is impossible to solve these equations unambiguously with only two
equations in hands. So, in order to estimate the form factors, we make an ad hoc assumption that
the relative phase ∆φ between 〈HT 〉u and 〈HT 〉d equals 0 or 180 degrees. Ignoring an overall phase,
the form factors are then real, and we arbitrarily choose the solution with 〈HT 〉u and 〈ĒT 〉u positive.
Fig. 4 presents 〈HT 〉u, 〈HT 〉d , 〈ĒT 〉u and 〈ĒT 〉d for one kinematic point (Q2 = 2.2 GeV 2,xB = 0.27)
calculated with this assumption. Note the different signs of 〈HT 〉u and 〈HT 〉d and the same sign of
〈ĒT 〉u and 〈ĒT 〉d . The theoretical predictions of the large-Nc QCD model [12] are consistent with
this spin-flavor structure extracted from hard exclusive π0 and η electroproduction data.

4
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Figure 3: (Color online) Generalized form factors |〈HT 〉π | and |〈ĒT 〉π | as a function of -t for Q2 = 2.2 GeV 2

and xB=0.27. Top: |〈ĒT 〉π | in red; Bottom: |〈HT 〉π | in blue.

6. Quark spin densities in the transverse plane and generalized transversity
distributions

Two-dimensional Fourier transforms of GPDs H(x,ξ = 0,−~∆2) and ĒT (x,0,−~∆2), where
~∆2 =−t, define the spin density of the polarized quarks in an unpolarized proton [13].

H(x,~b) =
∫ d2~∆

(2π)2 e−i~b~∆H(x,0,−~∆2) (6.1)

ĒT (x,~b) =
∫ d2~∆

(2π)2 e−i~b~∆ĒT (x,0,−~∆2) (6.2)

The GPDs ĒT (x,ξ = 0, t) and H(x,ξ = 0, t) were parametrized in the form [14]

F̄q(x,ξ = 0, t) = gq(x) · exp[( f q(x)t],

where gq(x) and f q(x) are the GPD forward limit and profile functions respectively. The Fourier
transform for this parametrization reads

F̄q(x,b) =
1

4π

gq(x)
f q(x)

exp[
−b2

4 f q(x)
]. (6.3)

For quarks polarized along bx-axis the impact parameter density reads [13]

δ
q(x,~b) =

1
2
[Hq(x,~b)−

by

m
∂

∂b2 Ēq
T (x,~b)]. (6.4)
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Figure 4: (Color online) Flavor separated generalized form factors 〈HT 〉 and 〈ĒT 〉 as a function of -t for
Q2 = 2.2 GeV 2 and xB=0.27. Top: 〈HT 〉u (red) and 〈HT 〉d (blue); Bottom: 〈ĒT 〉u (red) and 〈ĒT 〉d (blue).

The GPD H(x,~b) describes the density of unpolarized quarks and ĒT (x,~b) is related to the dis-
tortion of the polarized quark distribution in the transverse plane. We can map the u and d-quark
transverse spin density distributions as a function of Feynman x based on the GPD model [10] tuned
to describe the CLAS data. For example, Fig. 5 shows the impact parameter density of transversely
polarized quarks along the bx-axis in an unpolarized proton for Feynman x=0.1 and x=0.2. Note
the distortion along by-axis, similar for u and d-quarks. Looking at the transverse quark density
distribution, we can say that this width is diminished as x→ 1. This behavior is typical for the GPD
models.
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 Polarized Quarks in Unpolarized Proton
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Figure 5: (Color online) Impact parameter density of quarks which are transversely polarized along bx-axis
in an unpolarized proton. Top left and right panels are for u-quarks with x=0.1 and x=0.2, respectively.
Bottton left and right panels are for d-quarks with x=0.1 and x=0.2.

7. Conclusion

Differential cross sections of exclusive π0 and η electroproduction have been obtained in the
few-GeV region at more than 1800 kinematic points in bins of Q2,xB, t and φπ . Virtual photon
structure functions σU , σT T and dσLT have been obtained. It is found that σU and σT T are com-
parable in magnitude with each other, while σLT is very much smaller than either. Generalized
form factors of the transversity GPDs 〈HT 〉π,η and 〈ĒT 〉π,η were directly extracted from the ex-
perimental observables for the first time. It was found that the GPD ĒT dominates in pseudoscalar
meson production. The combined π0 and η data opens the way for the flavor decomposition of
the transversity GPDs. Within some simplifying assumptions, the decomposition has been demon-
strated. The spin density of polarized u and d-quarks in the transverse plane was evaluated for
different values of x from the GPD model tuned to described the experimental data.
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