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We discuss the advantages of a statistical technique, based on the simplex minimization and on the
parametric bootstrap, with respect to the standard χ2-minimization method. We present the ap-
plication of this technique for the extraction of the proton scalar dipole dynamical polarizabilities
from real Compton scattering data. In particular, we discuss how this technique is able to provide
realistic probability distributions of the fitted parameters, with no a-priori assumptions on their
shape, and to include the systematic errors in the minimization procedure in a straightforward
way.
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1. Polarizabilities in the proton

Real Compton scattering (RCS) gives a clean experimental access to the nucleon polarizabili-
ties, that are elementary structure constants such as its size, shape, and magnetic moment. In RCS
at low energies, the incoming real photon plays the role of an applied quasi-static electromagnetic
field that deforms the charge and magnetization densities of the nucleon. These induced polar-
izations can be measured through the energy and angular distribution of the RCS process and are
parametrized in terms of nucleon dipole and higher-order static polarizabilities. Taking into ac-
count the spatial and time dependence of the applied electromagnetic field, one observes internal
relaxation mechanisms, resonances and particle production, which make the polarizabilities de-
pending on the energy: this dependence is subsumed in the definition of dynamical polarizabilities,
that parametrize the response of the internal degrees of freedom of a composite object to an exter-
nal, real-photon field of arbitrary energy [1, 2, 3].
The definition of dynamical polarizabilities is given in terms of the multipole amplitudes f l±

T T ′ ,
which correspond to the transition T l → T ′l′, with T,T ′ = E,M and ± giving the total angular
momentum j = l±1/2. In particular, for the scalar dipole electric αE1(ω) and magnetic βM1(ω)

dynamical polarizabilities one has the following combination of the l = 1 multipoles

αE1(ω)≡ 2 f 1+
EE (ω)+ f 1−

EE (ω)

ω2 , βM1(ω)≡ 2 f 1+
MM(ω)+ f 1−

MM(ω)

ω2 , (1.1)

where ω is the center of mass (c.m.) photon energy.
The extraction of the dynamical polarizabilities from RCS data is quite challenging. In this work
we summarize the method proposed in Ref. [4] that allowed us to gain first insights on the scalar
dipole dynamical polarizabilities (DDPs) from RCS data.

2. Fitting technique

The scalar DDPs are parameterized as:

αE1(ω) = fα(αE1,αE1,ν ,βM1,βM1,ν)+gα(αE2,βM2,γi)+hα(h.t.), (2.1)

βM1(ω) = fβ (αE1,αE1,ν ,βM1,βM1,ν)+gβ (αE2,βM2,γi)+hβ (h.t.). (2.2)

In Eqs. (2.1) and (2.2), fα,β +gα,β correspond to the low-energy expansion (LEX) of the DDPs up
to O(ω5). In particular, the functions fα,β contain the contribution from the dipole scalar electric
(αE1) and magnetic (βM1) polarizabilities as well as from the dispersive polarizabilities αE1,ν and
βM1,ν , while gα,β depend on the quadrupole electric (αE2) and magnetic ( βM2) static polarizabil-
ities, and the static leading- and higher-oder spin polarizabilities γi. The functions hα(h.t.) and
hβ (h.t.) give the residual energy dependence beyond the LEX.

In our analysis, we use the predictions from fixed-t dispersion relations (DRs) for the higher-
order polarizabilities [5, 6, 7], and the experimental values extracted in Ref. [8] for the leading-
order static spin polarizabilities. Likewise, we use fixed-t DRs to calculate the functions hα(h.t.)
and hβ (h.t.). The functions fα,β (αE1,αE1,ν ,βM1,βM1,ν) are fitted to RCS data and contain four
free parameters, i.e. αE1,αE1,ν ,βM1, and βM1,ν . Using the additional constraint from the Baldin
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sum rule, αE1 +βM1 = (13.8±0.4) ·10−4 fm3 [9], the number of fit parameters is finally reduced
to three.

We used the data set of all the available experimental data for the unpolarized RCS cross
section below pion-production threshold, as listed in Ref. [4]. First, we tried to apply the standard
χ2-minimization procedure using the Newton (gradient) method. However, we found that this
method does not work due to i) high correlation among the fitting parameters and ii) low sensitivity
of the unpolarized RCS differential cross section to the DDPs coefficients. In particular, it was not
possible to achieve the positive-definiteness condition of the covariance matrix.
In order to solve this problem, we combined the geometrical simplex method for the minimization
in Minuit [10] and the parametric bootstrap [11], which is a Monte Carlo technique. The basic
idea is to approximate the true (and unknown) probability distribution of the single experimental
datum with the (known) probability distribution given by the measured value with its statistical
error. The only a priori assumption is the choice of the specific probability distribution associated
to the experimental point.

Schematically, in the case of gaussian-distributed statistical errors having a common system-
atic scale-factor uncertainty, the bootstrap sampling can be written as

Bi, j,k = (1+δ j,k)(Ei + γi, jσi), (2.3)

where Ei is the experimental value of the differential cross section, with a statistical error σi. In
Eq. (2.3), the index i runs over the data points, j labels the number of replicas and k indicates
different data sub-sets. The number γi, j is distributed according to a standard Gaussian N [0,1],
while δ j,k follows a box distribution U [−∆k,∆k], where ∆k is the published systematic error for
each data sub-set or, if more than one source for systematics is present, the product of all the
different contributions.
We then use our bootstrapped data Bi, j,k for the usual evaluation of χ2 function, that is minimized
with the simplex technique. After every bootstrap cycle, we then obtain a different estimate of the
best values of the fitting parameters, that allows us to reconstruct their probability distributions.

Our fitting technique has several advantages:

• the straightforward inclusion of systematical errors without substantial modifications in the
definition of the χ2 function;

• the realistic probability distributions for the fitted parameters is obtained without any a priori
assumption;

• the error propagation procedure is performed without using any approximated formulas;

• the probability distributions of every functions depending on the fitted parameters (such as
the DDPs or the differential cross section) are evaluated with the automatical inclusion of all
their correlation terms.

In Fig. 1 we show our fit results for the DDPs as function of the photon c.m. energy, with the
68% and 95% confidence level (CL) bands in comparison with the predictions of DRs [2].
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Figure 1: Results from the fit of the scalar DDPs as function of the c.m. photon energy ω: αE1(ω) on the
top and βM1(ω) on the bottom. The 68% (yellow) and 95% (green) CL areas include all the correlations
between the parameters. The dashed lines are the predictions from DRs [2].
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Figure 2: Probability distributions for the fitted parameters of the scalar DDPs.

3



P
o
S
(
S
P
I
N
2
0
1
8
)
1
2
2

Extracting the scalar dynamical polarizabilities from RCS data P. Pedroni

In Fig. 2 we show the probability distributions for the fitted parameters.
It is noteworthy to remark that, in general, the distribution of the minimal values of the χ2 function
evaluated by our technique is not distributed like a χ2 distribution, i. e. it is not the sum of the
squares of independent standard Gaussian random variables. This a consequence of the Monte
Carlo sampling of Eq. (2.3) and reflects one of the main effects due to the inclusion of systematical
errors, which correlate all point within a single subset.

As an example, we show in Fig. 3 the reconstructed probability distribution of the minimum
values of the χ2 function (χ2

min) after each bootstrap cycle in the case of a two-parameter fit, i.e.
αE1 and βM1. The modification on the shape of this distribution after the inclusion of systematical
errors is clearly visible.
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Figure 3: Probability distributions for the χ2
min variable obtained by our fitting technique with a two-

parameter fit. The usual χ2 distribution is obtained when only statistical errors are taken into account (black
line), while a different distribution (red line) is obtained when also systematic uncertainties are included.

3. Conclusions

We discussed a parametric bootstrap technique to analyze proton RCS data for the extraction of
the DDPs. We outlined several advantages of this technique, and refer to a forthcoming work [12]
for a more comprehensive description of the statistical features of the method. This fitting proce-
dure has never been applied so-far to analyze RCS data, and we plan to use it for a re-evaluation of
the proton scalar dipole static polarizabilities [12] from the existing RCS data, using fixed-t DRs
for the theoretical framework.
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