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1. Introduction

The magnetic monopole remains a hypothetical particle, years since its concrete formulation
by Dirac [1] as a quantum mechanical source of magnetic poles. Although there are concrete
field-theoretical models beyond the Standard Model (SM) of particle physics which contain con-
crete monopole solutions [2 – 7], these are extended objects with substructure, and their production
at colliders is either impossible, as they are ultra-heavy [2, 7], or extremely suppressed, due to
their composite nature [8]. On the other hand, Dirac point-like monopoles are sources of singular
magnetic fields, the underlying quantum field theory of which, if any, is completely unknown.

In ref. [9], the results of which are highlighted here, effective field theoretical models to obtain
production mechanisms were considered based on electric-magnetic duality, i.e. on the replacement
of the electric charge qe by the magnetic charge g, the latter obeying Dirac’s quantisation rule:

gqe = 2πn, n ∈ Z. (1.1)

The fine-structure constant is given by α = e2

4π
= 1

137 with e the positron charge, hence (1.1) yields

g =
1

2α
n
(

e
qe

)
e = 68.5e

(
e
qe

)
n≡ n

e
qe

gD, n ∈ Z, (1.2)

with gD = 68.5e the fundamental Dirac charge. This electric-magnetic duality replacement may
be used as a basis for the evaluation of monopole-production cross sections from collisions of SM
particles. Unfortunately, due to the large value of the magnetic charge (1.2), such a replacement
renders the corresponding production process non-perturbative. Nevertheless, one may attempt to
set benchmark scenarios for extracting mass limits by using Feynman-like graphs. This is standard
practice in all monopole searches at colliders so far [10].

Depending on the spin of the monopole field, typical graphs of monopole–antimonopole pair
production at LHC from proton–proton (pp) collisions are given in fig. 1. There are two kinds of
such processes: the Drell–Yan (DY) (see fig. 1(a)) and the photon-fusion (PF) production (see
figs. 1(b) and 1(c)). In ref. [9], previous DY-plus-PF studies [11, 12] carried out for spin-1/2
monopoles were extended to also consider monopoles of spin 0 and 1. The most recent MoEDAL
analysis [13] makes use of the results on photon-fusion production of ref. [9] presented here.

An arbitrary value for the magnetic dipole moment for monopoles with spin is discussed,
treating κ as a new phenomenological parameter. A large-κ limit may allow, despite the large
magnetic coupling, the monopole-pair production cross sections to be finite, thus making sense of
the Feynman-like graphs of the effective theory. These perturbativity conditions [9], which pertain
to slowly moving monopoles, are of relevance to MoEDAL searches [14].

This report is structured as follows. In section 2, the cross sections for monopole–antimonopole
pair production via PF are derived for various monopole spins. The pertinent Feynman rules are im-
plemented in a dedicated MADGRAPH model, described in section 3, together with the monopole
phenomenology at the LHC. Conclusions and outlook are given in section 4.

2. Cross sections for spin-S monopole production via photon–photon scattering

We discuss the electromagnetic interaction of a monopole of spin S = 0, 1/2, 1 with a photon.
The corresponding theory is an effective U(1) gauge theory obtained after appropriate dualisation
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(c) Four-vertex PF process.

Figure 1: Feynman-like tree-level graphs for monopole–antimonopole pair production processes.
(a) DY monopole production via qq̄ annihilation; (b) monopole production via photon fusion (spins
0, 1/2 and 1); (c) contact diagram for monopole production via photon-fusion (spins 0 and 1).

of the pertinent field theories describing the interactions of charged spin-S fields with photons.
Milton, Schwinger and collaborators conjectured [15, 16], upon invoking electric–magnetic dual-
ity, that when discussing the interaction of monopole with matter (electrons or quarks), e.g. the
propagation of monopoles in matter media used for detection and capture of monopoles, or consid-
ering monopole–antimonopole pair production through DY or PF processes, a monopole-velocity
dependent magnetic charge has to be considered in the corresponding cross section formulae:

g → g
v
c
≡ gβ . (2.1)

The replacement (2.1) was then used to interpret the experimental data in collider searches
for magnetic monopoles [10 – 12, 15, 17 – 20]. Due to the lack of a concrete theory for magnetic
sources, the results of the pertinent experimental searches can be interpreted in terms of both a
β -independent and a β -dependent magnetic charges, and then one may compare the corresponding
bounds, as in the recent searches by the MoEDAL Collaboration [13, 20]. The monopole velocity β

is given by the Lorentz invariant expression in terms of the monopole mass M and the Mandelstam
variable s, related to the centre-of-mass energy of the fusing incoming particles, i.e. photons or
(anti)quarks (

√
s = 2Eγ/q):

β =

√
1− 4M2

s
. (2.2)

As a result of (2.1), the coupling of the monopole to the photon, g(β ), is linearly dependent on the
particle boost, β = |~p|/Ep, where (Ep,~p) is the monopole four-momentum.

In this section we outline the pertinent Feynman rules and then proceed to give expressions for
the associated differential and total production cross sections for the photon-fusion production for
monopole fields of various spins. A detailed discussion on the Drell–Yan process can be found in
ref. [9]. We consider both β -dependent and β -independent magnetic couplings.

2.1 Scalar monopole

A massive spin-0 monopole interacting with a massless U(1) gauge field representing the
photon is discussed here. Searches at the LHC [19 – 22] and other colliders [10] have set upper
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cross-section limits is this scenario assuming DY production. The Lagrangian describing the elec-
tromagnetic interactions of the monopole is given simply by a dualisation of the SQED Lagrangian

L =−1
4

FµνFµν +(Dµ
φ)†(Dµφ)−M2

φ
†
φ , (2.3)

where Dµ = ∂µ − ig(β )Aµ , Aµ is the photon field with strength tensor Fµν = ∂µAν − ∂νAµ and
φ is the scalar monopole field. There are two interaction vertices, that couple the spin-0 monopole
with the U(1) gauge field.

There are three possible graphs contributing to scalar monopole production by PF: t-channel,
u-channel and seagull graph shown in fig. 2. The differential cross section for the spin-0 monopole–
antimonopole production in terms of the pseudorapidity η yields [9]

dσS=0
γγ→MM

dη
=

πα2
g (β )β

sγγ cosh2
η

1+

(
1− 2(1−β 2)

1−β 2 tanh2
η

)2
 . (2.4)

The pair production is mostly central as is the case for various beyond-SM scenarios. After inte-
grating over the solid angle, the total cross section reads

σ
S=0
γγ→MM =

4πα2
g (β )β

sγγ

[
2−β

2− 1
2β

(1−β
4) ln

(
1+β

1−β

)]
. (2.5)

The cross section drops rapidly with increasing mass and disappears sharply at the kinematically
forbidden limit of M >

√sγγ/2.

Aρ ,ελ ′ M

MAσ ,ελ

p2µ

kπ

p1ν
q1σ

q2ρ

(a) t-channel.

Aρ ,q2ρ
,ελ ′ M

MAσ ,q1σ
,ελ

p2µ

k̃π

p1ν

(b) u-channel.

Aρ ,q2ρ
,ελ ′ M

Aσ ,q1σ
,ελ M

p2µ

p1ν

(c) Four-vertex diagram.

Figure 2: Feynman-like graphs for: (a) t-channel; (b) u-channel; and (c) seagull processes encom-
pass all the contributions to the matrix amplitude of scalar particle production by PF.
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2.2 Spin-1/2 point-like monopole with arbitrary magnetic moment term

The phenomenology of a monopole with spin 1/2 is the most thoroughly studied case [11, 12,
17, 18] and explored in collider searches [13, 19 – 22]. The electromagnetic interactions of the
monopole with photons, are described by a U(1) gauge theory for a spinor field ψ representing the
monopole interacting with the massless U(1) gauge field Aµ of the photon.

The unknown origin of the monopole magnetic moment leads us to assume that it is generated
only through anomalous quantum-level spin interactions as for the QED electron. If κ = 0, the
Dirac Lagrangian is recovered. Thus, the effective Lagrangian for the spinor-monopole-photon
interactions takes the form

L =−1
4

FµνFµν +ψ(i /D−m)ψ− i
1
4

g(β )κ Fµνψ[γµ ,γν ]ψ, (2.6)

where Fµν is the electromagnetic field strength tensor, /D= γµ(∂µ− ig(β )Aµ) is the total derivative
and [γµ ,γν ] is a commutator of γ matrices. The magnetic coupling g(β ) is at most linearly depen-
dent on the monopole boost β . The effect of the magnetic-moment term is observable through its
influence on the magnetic moment at tree level which is

µM =
g(β )
2M

2(1+2κ̃)Ŝ, Ŝ =
1
2
, (2.7)

where Ŝ is the spin expectation value and the corresponding “gyromagnetic ratio” gR = 2(1+2κ̃).
The dimensionless constant κ̃ is defined such that

κ =
κ̃

M
. (2.8)

Noticeably, the parameter κ in (2.6) is dimensionful having units of inverse mass, which breaks
the renormalisability of the theory. This may not be a serious obstacle for considering the case
κ 6= 0, if the pertinent model is considered in the context of an effective field theory embedded in
some, yet unknown, microscopic theory, in which the renormalisation can be recovered.

Photon fusion occurs through t-channel and u-channel processes as shown in fig. 3. The an-
gular distributions are shown in fig. 4 for spin 1/2 and for various values of the parameter κ̃ . The
case κ̃ = 0 represents the SM expectation for electron-positron pair production if the coupling is
substituted by the electric charge e, i.e. restoring the Lagrangian to simple Dirac QED. This case is
clearly distinctive as the only unitary and renormalisable case [9].

The total cross section for arbitrary κ is shown graphically in fig. 5. The high-energy limit
sγγ →∞ makes the differential cross section divergent, except, unsurprisingly, when recovering the
Dirac model with κ = 0 [9]:

dσ
S= 1

2
γγ→MM

dΩ

sγγ→∞

−−−−→
α2

g (β )

sγγ

1+ cos2 θ

1− cos2 θ
, κ = 0. (2.9)

The total cross section carries the same high energy behaviour; it is finite for κ = 0, and diverges
for all other values of κ:

σ
S= 1

2
γγ→MM

sγγ→∞

−−−−→


sγγ , κ 6= 0,
4πα2

g (β )

sγγ

[
ln
(

sγγ

M2

)
−1
]

, κ = 0.
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(a) t-channel.
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(b) u-channel.

Figure 3: Feynman-like graphs for the t-channel (a) and u-channel (b) show the contributions to
the matrix amplitude for pair production of spin-1/2 monopoles by PF.

Figure 4: Angular distributions for monopole–antimonopole pair production via PF for a monopole
with spin 1/2 and mass M = 1.5 TeV as a function of the scattering angle θ (left) and the pseudora-
pidity η (right) at√sγγ = 2Eγ , where Eγ = 6M, and for various values of the parameter κ̃ [9].

For a constant value of sγγ , as assumed in fig. 5, the high-energy limit may be approximated by
M→ 0, where the cross section becomes finite only for the value κ = 0 and diverges in other κ

values, as expected from (2.10).
Hence, a unitarity requirement may isolate the κ = 0 model from the others as the only viable

theory for the spin-1/2 monopole, unless the model is viewed as an effective field theory. In that
case, the value of κ can be used as a window to extrapolate some characteristics of the extended
model in which unitarity is restored. In addition, κ is dimensionful, hence a non-zero κ clearly
makes this (effective) theory non-renormalisable.

2.3 Vector monopole with arbitrary magnetic moment term

Monopoles of spin-1 have been addressed for the first time in colliders recently by the MoEDAL
experiment for the Drell–Yan production [20]. A monopole with a spin S = 1 is postulated as a
massive vector meson Wµ interacting only with a massless gauge field Aµ in the context of a gauge
invariant Proca field theory. Lacking a fundamental theory for point-like magnetic poles, a mag-
netic moment term is included in the effective Lagrangian, proportional to κ , as a free phenomeno-
logical parameter [9]. Unlike the spin-1/2 monopole case, for the vector monopole the magnetic
moment parameter κ is dimensionless. The case κ = 0 corresponds to a pure Proca Lagrangian,

5
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Figure 5: Total cross section for the
pair production of spin-1/2 monopoles
via the PF process, as a function of the
monopole mass M for different values
of κ̃ at √sγγ = 4 TeV [9].

and κ = 1 to that of the SM Wµ boson in a Yang–Mills theory with spontaneous symmetry break-
ing. As we shall see, for certain formal limits of large κ and slowly moving monopoles, one may
also attempt to make sense of the perturbative DY or PF processes of monopole–antimonopole pair
production, when velocity-dependent magnetic charges are employed.

The pertinent effective Lagrangian, obtained by imposing electric–magnetic duality on the
respective Lagrangian terms for the interaction of W± gauge bosons with photons in the generalised
SM framework [23] takes the form:

L =−ξ (∂µW †µ)(∂νW ν)− 1
2
(∂µAν)(∂

νAµ)−
1
2

G†
µνGµν −M2W †

µW µ − ig(β )κFµνW †
µWν ,

(2.10)

where † denotes the hermitian conjugate and Gµν = (DµW ν −DνW µ), with Dµ = ∂µ − ig(β )Aµ

the U(1) covariant derivative, which provides the coupling of the (magnetically charged) vector
field Wµ to the gauge field Aµ , playing the role of the ordinary photon. The parameter ξ is a
gauge-fixing parameter. The magnetic and quadrupole moments are given respectively by

µM =
g(β )
2M

(1+κ)Ŝ, Ŝ = 1, (2.11a)

QE =−g(β )κ
M2 , (2.11b)

where Ŝ is the monopole spin expectation value and the corresponding “gyromagnetic ratio” gR =

1+κ . Restricting our attention to tree level, (2.10) is used to evaluate the κ-dependent PF Born
amplitudes AµAν →WµW †

ν and DY ψψ →WµW †
ν .

Monopole–antimonopole pairs with spin 1 are generated at tree level by photons fusing in the
t-channel, u-channel and at a 4-point vertex in Feynman-like graphs similar to those given in fig. 2
for scalar monopoles [9]. These kinematic distributions are plotted as functions of the kinematic
variables θ and η in fig. 6 for various values of the phenomenological parameter κ .

The distinct behaviour of the kinematic distribution in the unitarity-respecting case κ = 1, that
shows a depression around η = 0, as compared to the peaks in the cases where κ 6= 1 is shown in
fig. 6. This is in agreement with the situation characterising W+W− production in the SM case [23].
The parameter κ influences the unitarity and renormalisability of the effective theory; the κ = 1

6
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Figure 6: Angular distributions for monopole–antimonopole pair production via PF for a monopole
with spin 1 and mass M = 1.5 TeV as a function of the scattering angle θ (left) and the pseudora-
pidity η (right) at√sγγ = 2Eγ , where Eγ = 6M, and for various values of the parameter κ [9].

case is the only finite solution in the ultraviolet limit sγγ → ∞ [9]:

dσS=1
γγ→MM

dΩ

sγγ→∞

−−−−→
α2

g (β )

2sγγ(1− cos2 θ)2

(
3cos4

θ +10cos2
θ +19

)
, κ = 1. (2.12)

For all other κ values one obtains a differential cross section, which diverges linearly with sγγ →∞:

dσS=1
γγ→MM

dΩ

sγγ→∞

−−−−→ sγγ , κ 6= 1. (2.13)

The total cross section for the κ = 1 case is given by

σ
S=1
γγ→MM =

πα2
g (β )β

sγγ

(
2

3β 4−9β 2 +22
1−β 2 − 3(1−β 4)

β
ln
(

1+β

1−β

))
, (2.14)

and is shown graphically in fig. 7 for various κ values. In the high energy limit sγγ → ∞, only the
total cross section for κ = 1 is finite, in similar spirit to the differential cross section behaviour:

σ
S=1
γγ→MM

sγγ→∞

−−−−→


8πα2

g (β )

M2 , κ = 1,

sγγ , κ 6= 1.

2.4 Comparison of various spin models and production processes

The dominant production process is PF by a large margin at √sqq/γγ = 4 TeV, as seen in
fig. 8 for all spin models. In particular, graphs 8(a) and 8(b) show the SM-like cases for which
κ = 1 and κ̃ = 0 represent the S = 1 and S = 1/2 SM-like cases, respectively; graph 8(c) shows
the spin-0 monopole case. Graphs 8(d) and 8(e) demonstrate that the trend is maintained for all
values of κ and κ̃ by choosing the non-distinctive value of two. The cross section for monopole
production increases with the spin of the monopole most of the mass range, if the SM-like cases
for the magnetic-moment parameters are chosen, supporting the findings of ref. [12].

7
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Figure 7: Total cross section for the
pair production of spin-1 monopoles
via the PF process, as a function of the
monopole mass M for different values
of κ at √sγγ = 4 TeV [9].

Figure 8: Monopole-pair cross sections for PF and DY processes versus mass at √sqq/γγ = 4 TeV
for β -independent coupling. (a) spin-1 in SM-like case (κ = 1); (b) spin-1/2 in SM-like case (κ̃ = 0);
(c) spin-0, without magnetic moment; (d) spin-1 with κ = 2; (e) spin-1/2 with κ̃ = 2 [9].

2.5 Perturbatively consistent limiting case of large κ and small β

The non-perturbative nature of the large magnetic Dirac charge invalidates any perturbative
treatment of the pertinent cross sections based on Feynman-diagrams. This situation may be re-
solved if thermal production in heavy-ion collisions is considered [24, 25]. Another approach
involves specific limits of the parameters κ and β of the effective models of vector and spinor
monopoles, for a velocity-dependent magnetic charge [9]. In this limit, the perturbative trunca-
tion of the production processes becomes meaningful provided the monopoles are slowly moving,
that is β � 1. In terms of the centre-of-mass energy √sγγ/qq, such a condition on β implies, on
account of (2.2), that the monopole mass is around 2M ' √sγγ/qq +O(β 2). We remark that, in
hadron-collider production of monopole–antimonopole pairs, sγγ/qq is not definite but follows a
distribution defined by the parton/photon distribution function (PDF) for the DY or PF processes.

In the absence of a magnetic-moment parameter, κ , or for the unitary value κ = 1 in the
case of spin-1 monopoles, the condition β � 1 would lead to strong suppression of the pertinent

8
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cross sections beyond the current experimental sensitivities, thereby rendering the limit β → 0
experimentally irrelevant for placing bounds on monopole masses or magnetic charges. Indeed,
the various total cross sections discussed so far behave as follows, when β → 0:

σ
S=1,κ=1
γγ→MM

β→0
' 19g4

8π s
β

5 β→0−−−→ 0 (spin-1 PF),

σ
S=1,κ=1
qq→MM

β→0
' 135sαe g2

1728M4 β
5 β→0−−−→ 0 (spin-1 DY),

σ
S= 1

2 ,κ=0
γγ→MM

β→0
' g4

4π s
β

5 β→0−−−→ 0 (spin-1/2 PF),

σ
S= 1

2 ,κ=0
qq→MM

β→0
' 5αe g2

18 s
β

3 β→0−−−→ 0 (spin-1/2 DY),

σ
S=0
γγ→MM

β→0
' g4

4π s
β

5 β→0−−−→ 0 (spin-0 PF),

σ
S=0
qq→MM

β→0
' 5αe g2

108s
β

5 β→0−−−→ 0 (spin-0 DY). (2.15)

However, in the case of non-trivial and large (dimensionless) magnetic-moment-related pa-
rameters κ, κ̃ , relevant for the cases of vector and spinor monopoles, the situation changes drasti-
cally [9] if one considers the limits

κ � 1, κ̃ � 1, β � 1, (2.16)

with κ̃ defined in (2.8), but in such a way that the strength of the derivative magnetic-moment
couplings for spin-1/2 monopoles is perturbatively small. Since the magnitude of the monopole
momentum is proportional to Mβ , one expects that the condition of a perturbatively small derivative
coupling for magnetic moment is guaranteed if, by order of magnitude, one has:

gκ
′
β

2 < 1 , (2.17)

where κ ′ = κ̃ for spin-1/2 monopole and κ ′ = κ for spin-1 monopole.
For the spin-1/2 monopole, one observes that in the limit (2.16) and respecting (2.17), upon

requiring the absence of infrared divergences in the cross sections as β → 0, and postulating that:

(κ̃βg)4
β

β→0
κ→∞
===== |c′1|, c′1 = finite constant, (2.18)

so that (2.17) is trivially satisfied, since κ̃gβ 2 = |c′1|
1
4 β

3
4

β→0
κ→∞−−−→ 0, the dominant contributions to the

PF and DY total cross sections are given by

σ
S= 1

2
γγ→MM ∼ πα

2
g (β )βκ

4s =
(κ̃ gβ )4 β

16πM4 s
β→0

κ̃→∞
===== finite, (2.19)

and

σ
S= 1

2
qq→MM

∼ παeαg(β )
10βκ2

9
=

5αe

18M2 (κ̃βg)2
β

β→0
κ→∞−−−→ 0, (2.20)

respectively. Hence, for slowly-moving spinor-monopoles, with velocity-dependent magnetic charge,
and large magnetic moment parameters, it is the PF cross section which is the dominant one of rel-
evance to collider experiments [9].

9
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Similar results characterise the spin-1 monopole. Indeed, in the limit (2.16), (2.17), the domi-
nant contributions to the total cross sections for the PF and DY processes are such that

σ
S=1
γγ→MM ∼ πα

2
g

29β 5 κ4

4s
=

29
64πs

β

(
κβg

)4
, (2.21)

and

σ
S=1
qq→MM = αeαg(β )π

40β 3κ2

27s
= αe

10
27s

(
κβg

)2
β

3, (2.22)

respectively. We can see that, by requiring the absence of infrared (β → 0) divergences in the total
cross sections, one may consistently arrange that the PF cross section (2.21) acquires a non-zero
(finite) value as β → 0, whilst the DY cross section (2.22) vanishes in this limit:

(κβg)4
β

β→0
κ→∞
===== |c1|, c1 = finite constant,

σ
S=1
γγ→MM

β→0
κ→∞
=====

29c1

64π s
,

σ
S=1
qq→MM

β→0
κ→∞
===== αe

10
√
|c1|

27s
β

5
2

β→0
κ→∞−−−→ 0. (2.23)

In such a limit, the quantity κgβ 2 = |c1|
1
4 β

3
4

β→0
κ→∞−−−→ 0, so (2.17) is trivially satisfied, and thus the

perturbative nature of the magnetic moment coupling is guaranteed. Hence in this limiting case of
velocity-dependent magnetic charge, large magnetic moment couplings and slowly moving vector
monopoles, again the PF cross section is the dominant one relevant to searches in current colliders
and can be relatively large (depending on the value of the phenomenological parameter c1) [9].

3. MADGRAPH implementation and LHC phenomenology

The MADGRAPH generator [26] is used to simulate monopoles by developing a dedicated Uni-
versal FeynRules Output (UFO) model [27], as explained in detail in ref. [9]. This includes both the
β -dependent and -independent photon–monopole coupling. Three different spin cases have been
considered: spins 0, 1/2 and 1. To generate a UFO model from the Lagrangian, FEYNRULES [28],
an interface to MATHEMATICA, was utilised. The velocity β , defined in (2.2), is defined as a form
factor in the generated UFO models. For scalar and vector monopoles, the inclusion in the sim-
ulation of the four-particle vertex shown in fig. 2(c) in addition to the u- and t-channel, shown in
figs. 2(b) and 2(a) respectively, led to the necessary use of UFO model written as a PYTHON object.
The implementation of the four-vertex diagram proved to be non-trivial due to the g2 coupling.

Apart from the photon fusion production mechanism, the UFO models were also tested for
the DY production mechanism as well. The DY process for monopoles was already implemented
in MADGRAPH using a FORTRAN code setup for spin-0 and spin-1/2 monopoles, utilised by AT-
LAS [19, 21] and MoEDAL [20, 22]. These FORTRAN setups were rewritten in the context of this
work as UFO models, following their PF counterparts, and they were extended to include the spin-1
case. The new implementation for PF and DY was used in the most recent MoEDAL analysis [13].
After validating the UFO models against their FORTRAN implementations for scalar and fermionic
monopoles, all spin cases were compared by the theoretical predictions of section 2 and of ref. [9].
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3.1 Comparison between the photon fusion and the Drell–Yan production mechanisms

Apart from the total cross sections, it is important to study the angular distributions of the
generated monopoles. This is of great interest to the interpretation of the monopole searches in
collider experiments, given that the geometrical acceptance and efficiency of the detectors is not
uniform as a function of the solid angle around the interaction point. Here the kinematic distribu-
tions are compared between the photon-fusion (γγ) and the Drell–Yan mechanisms. To this end,
the β -dependent UFO monopole model was used in MADGRAPH. Monopole–antimonopole pair
events have been generated for pp collisions at

√
s = 13 TeV, i.e. for the LHC Run-2 operating

energy. The PDF was set to NNPDF23 [29] at LO for the Drell–Yan and LUXqed [30] for the
photon-fusion mechanism. The monopole magnetic charge is set to 1 gD, yet the kinematic spectra
are insensitive to this parameter.

The distributions of the monopole velocity, a crucial parameter for the detection of monopoles
in experiments such as MoEDAL [14], are depicted in fig. 9. The velocity β , which is calculated
in the centre-of-mass frame of the colliding protons, largely depends on the PDF of the photon
(q/q̄) in the proton for the photon-fusion (Drell–Yan) process. For scalar monopoles, fig. 9 (left)
shows that slower-moving monopoles are expected for PF than DY, an observation favourable for
the discovery potential of MoEDAL NTDs, the latter being sensitive to low-β monopoles. The
comparison is reversed for fermionic monopoles, where PF yields faster monopoles than DY (fig. 9
(centre)). Last, as deduced from fig. 9 (right), the β distributions for PF and DY are very similar.
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Figure 9: The monopole velocity β distributions of spin-0 (left), spin-1/2 (centre) and spin-1
monopoles (right) for both the photon-fusion and the Drell–Yan mechanisms at

√
s = 13 TeV [9].

The kinetic-energy spectrum, shown in fig. 10, is slightly softer for PF than DY for scalar (left
panel) and vector (right panel) monopoles, whereas it is significantly harder for fermions (cen-
tral panel). This difference may be also due to the four-vertex diagram included in the bosonic
monopole case. This observation is in agreement with the one made for β previously. We have
also compared MADGRAPH predictions for kinetic-energy and pT distributions between with- and
without-PDF cases, the latter also against analytical calculations (cf. section 2) across different
spins and production mechanisms. As expected, some features seen in the direct γγ or qq̄ produc-
tion are attenuated in the pp production due to the sampling of different β values in the latter as
opposed to the fixed value in the former.
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Figure 10: The kinetic energy distributions for spin-0 (left), spin-1/2 (centre) and spin-1 monopoles
(right) for the photon-fusion and the Drell–Yan mechanisms at

√
s = 13 TeV and for κ̃ = 0 [9].

As far as the pseudorapidity is concerned, its distributions are shown in fig. 11. The spin-0
(left panel) and spin-1 (right panel) cases yield a more central production for DY than PF, whilst
for spin-1/2 (central panel) the spectra are practically the same, although the one for PF is slightly
more central. Again this behaviour of bosonic versus fermionic monopoles may be attributed to
the (additional) four-vertex diagram for the bosons.
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Figure 11: The pseudorapidity η distributions for spin-0 (left), spin-1/2 (centre) and spin-1
monopoles (right) for the photon-fusion and the Drell–Yan mechanisms at

√
s = 13 TeV and for

κ = 1 [9].

The total cross sections for the various spin cases, assuming SM magnetic-moment values for
spin 1/2 and spin 1 and β -dependent coupling are drawn in fig. 12 for photon fusion and Drell–
Yan processes, as well as their sum. At tree level there is no interference between the PF and DY
diagrams, so the sum of cross sections expresses the sum of the corresponding amplitudes. The
PF mechanism is the dominant at the LHC energy of 13 TeV throughout the whole mass range of
interest of 1÷6 TeV for the bosonic-monopole case. However if the monopole has spin 1/2 the PF
dominates for masses up to ∼ 5 TeV, while DY takes over for M & 5 TeV.

3.2 Perturbatively consistent limiting case of large κ and small β for photon fusion

In section 2.5, the theoretical calculations show that in the perturbatively consistent limit of

12
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Figure 12: Total cross section at
√

s = 13 TeV for PF, DY and their sum versus monopole mass.
For S = 1/2 and S = 1, the SM values κ̃ = 0 and κ = 1, respectively, are drawn, while there is no
magnetic moment in the spin-0 case [9].

large κ and small β , the cross sections are finite for both spin-1/2 (2.19) and spin-1 (2.23) cases. In
this section, we focus on this aspect of the photon-fusion production mechanism, since it dominates
at LHC energies. We first put to test this theoretical claim utilising the MADGRAPH implemen-
tation and later we discuss the kinematic distributions and comment on experimental aspects of a
potential perturbatively-consistent search in colliders to follow in this context.

For a spin-1/2 monopole, the dimensionless parameter κ̃ , defined in (2.8), is varied from zero
(the SM scenario) to 10,000 for γγ collisions at √sγγ = 13 TeV. As evident from fig. 13 (left),
where the cross sections are plotted for pp collisions at

√
s = 13 TeV, the cross-section of the

photon fusion process for κ̃ = 0 is going to zero very fast as β → 0. However for non-zero κ̃ , it
remains finite even if β goes to zero, as expected.
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Figure 13: Photon-fusion production at
√

s = 13 TeV pp collisions for spin-1/2 monopole, β -
dependent coupling and various values of the κ̃ parameter: cross section versus monopole mass
(left); pT distribution for M = 1500 GeV (centre); and η distribution for M = 1500 GeV (right) [9].

The central and right-hand-side plots of fig. 13 compare the pT and η distributions, respec-
tively, between the SM value κ̃ = 0 and much higher values up to κ̃ = 104. The SM-like case is
characterised by a distinguishably “softer” pT spectrum and a less central angular distribution than
the large-κ̃ case. The latter case, on the other hand, seems to converge to a common shape for the
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kinematic variables as κ̃ increases to very large values. The common kinematics among large κ̃

values would greatly facilitate an experimental analysis targeting perturbatively reliable results.
Repeating the same procedure this time for spin-1 monopoles, we vary the dimensionless

parameter κ from unity (the SM scenario) to 10,000 for the photon-fusion process. Similar to the
spin-1/2 monopole case, the cross section for κ = 1, i.e. the SM scenario, is going to zero very
fast as β → 0. However, for κ > 1, the cross section becomes finite even if β goes to 0. This
observation remains valid when the cross section for pp collisions, instead of γγ scattering, is
considered. Indeed, fig. 14 shows that for large values of κ and M '

√
s/2, which is equivalent to

β � 1, the cross section, although very small, remains finite.
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Figure 14: Photon-fusion production at
√

s = 13 TeV pp collisions for spin-1 monopole, β -
dependent coupling and various values of the κ parameter: cross section versus monopole mass
(left); pT distribution for M = 1500 GeV (centre); and η distribution for M = 1500 GeV (right) [9].

In fig. 14, a comparison of the pT (centre) and η (right) distributions, between the SM value
κ = 1 and much higher values up to κ = 104 is given for spin 1. As for spin 1/2, the large-κ
curves converge to a single shape independent of the actual κ value, with the SM-case yielding
different distributions from the large-κ case. As discussed previously for fermionic monopoles,
such an experimental analysis can be concentrated on the κ-dependence of the total cross section
and the acceptance for very slow monopoles to provide perturbatively valid mass limits in case of
non-observation of a monopole signal, since the kinematic distributions are almost κ-invariant in
pp collisions. The MoEDAL experiment [14], in particular, being sensitive to slow monopoles can
make the best out of this new approach in the interpretation of monopole-search results.

4. Conclusions

We dealt with the cross-section computation for pair production of monopoles of spin S =

0, 1/2, 1, through either photon-fusion or Drell–Yan processes. We have employed duality argu-
ments to justify an effective monopole-velocity-dependent magnetic charge in monopole-matter
scattering processes. Based on this, we conjecture that such β -dependent magnetic charges might
also characterise monopole production.

A magnetic-moment term proportional to a phenomenological parameter κ is added to the
effective Lagrangians for spins 1/2 and 1. The lack of unitarity and renormalisability for an arbitrary
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κ value is not an issue, from an effective-field-theory point of view, given that the microscopic
high-energy (ultraviolet) completion of the models considered above is unknown. In this sense,
we consider the spin-1 monopole as a potentially viable phenomenological case worthy of further
exploration, already applied in the recent monopole searches performed by MoEDAL [13, 20].

The possibility to use the parameter κ in conjunction with the monopole velocity β to achieve
a perturbative treatment of the monopole-photon coupling is intriguing. Indeed, by limiting the dis-
cussion to very slow (β � 1) monopoles, the perturbativity is guaranteed, however, at the expense
of a vanishing cross section. Nonetheless it turns out that the photon-fusion cross section remains
finite and the coupling is perturbative at the formal limits κ → ∞ and β → 0. This ascertainment
opens up the possibility to interpret the cross-section bounds set in collider experiments, such as
MoEDAL, in a proper way, thus yielding sensible monopole-mass limits.

In addition, a complete implementation in MADGRAPH of the monopole production is per-
formed both for the photon-fusion and the Drell–Yan processes, also including the magnetic-
moment terms. This tool allowed to probe for the first time at LHC the photon-fusion monopole
production by the MoEDAL experiment [13]. Furthermore, the experimental aspects of a perturba-
tively valid monopole search for large values of the magnetic-moment parameters and slow-moving
monopoles have also been outlined, also in view of the corresponding kinematics.
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