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1. Introduction

The approach to the Standard Model of Particle Physics based on the classical field-theoretical
(both perturbative and non-perturbative) description is very efficient and allows for series of de-
tailed computations. Nevertheless, there is a more elegant way to present this model, based on the
proposal made by A. Connes [7],[8] that it is possible to describe all features of this theory in the
geometrical language. For this reason one has to generalize the notion of geometry and use the so-
called noncommutative spaces which are described in terms of the spectral geometry, especially us-
ing spectral triples. In [6] we have proposed an extension of this description for finite geometries in
case of the incorporation of pseudo-Riemannian structure. We have shown that for a suitable choice
of it we can restrict possible classes of models, especially there exists such a pseudo-Riemannian
structure on the spectral triple originally introduced by A. Connes and A.H. Chamseddine (see e.g.
[21]) that provide additional symmetry in our system which we interpreted as a source of the lack
of the mixing between leptons and quarks. Moreover, we have classified all possible such struc-
tures on that triple and shown that the only physically interesting one is the aforementioned one.
Furthermore, it allows for the extension of the Standard Model by adding sterile neutrinos.

2. Noncommutative Geometry for Particle Physics

We start this section with a brief description of the Connes’ reconstruction theorem [9]. One
can summarize it as follows. Let (M,g) be a closed, orientable Riemannian spinc manifold. Then
the metric and spin structure of (M,g) can be encoded in a system (C∞(M),L2(M),DM) enlarged
by two other elements: grading γ5 in the associated Cliford algebra and the charge conjugation
operator. Here C∞(M) is the ∗-algebra of smooth complex-valued functions on M, L2(H) is a
Hilbert space of square-integrable spinors and DM is the Dirac operator acting on sections of the
spinor bundle.

Therefore, there is sugestion to replace the standard notion of geometry by considering such
systems that additionally satisfies few compatibility conditions. Moreover, the algebra C∞(M) can
be replaced by an arbitrary, even noncommutative, algebra and hence one can consider noncom-
mutative geometries. To clarify this concept let us present the formal definition of a spectral triple.
We say that a system (A,H,D,γ,J) is a spectral triple if A is a ∗-algebra represented, through a
faithfull representation π , on the Hilbert space H, D is an essentially self-adjoint operator on H. It
is assumed that D has a compact resolvent and satisfies few compatibility conditions (see e.g.[14]).
Furthermore, it is assumed that we have a Z/2Z-grading γ = γ∗ that commutes with the representa-
tion of A, and there is an antilinear isometry J for which it is assumed that the 0th order condition is
fulfilled, i.e. for every a,b ∈ A we require [Jπ(a∗)J−1,π(b)] = 0. It makes H the A−A-bimodule.
Moreover, there is a series of conditions between these elements. First of all, the first-order condi-
tion is required to be satisfied: for every a,b ∈ A [[D,π(a)],Jπ(b∗)J−1] = 0. The behaviour of the
system is mostly determined by the so-called KO-dimension that is a number from 0 to 8 defined
by the choice of signs ε,ε ′,ε ′′ =±1 that appear in the following compatibility conditions

DJ = εJD, J2 = ε
′id, Jγ = ε

′′
γJ. (2.1)

These objects have an application in Particle Physics when one consider the so-called almost-
commutative spectral triples, i.e. a system with an algebra being of the form C∞(M)⊗AF , where
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AF is some finite-dimensional matrix algebra, which choice is related to the gauge group of a given
physical model. The rest of ingredients of the product triple are also constructed from the usual
spectral triple for M and a finite triple with AF as an algebra. For a detailed discussion see e.g. [14],
[4], [21] and [7], where one can also find the description of a method to obtain an effective action
for these models using spectral geometry. We will not concentrate on these aspects here, but rather
analyse the structure of the finite triple. We use here (and also in [6]) the standard description (in
conventions from [21]) of the finite spectral triple for the Standard Model of Particle Physics (for
the detailed discussion see e.g. [21] and [14]). As an algebra we take

AF = C⊕H⊕M3(C), (2.2)

where H states for quaternions.
The Hilbert space for one particle generation is of the form

HF = (Hl⊕Hq)⊕ (Hl⊕Hq). (2.3)

Here Hl denotes the leptonic space with the basis {νR,er,(νL,eL)} and Hq is the quark space with
a basis {uR,dR,(uL,dL)} (in each quark color). Hl and Hq are antiparticle sectors. Notice that
dimHF = 96.

The representation of AF on HF is given on each sector separately. We have

• on Hl and Hq (for each color) : π(λ ,h,m) = λ ⊕λ ⊕m,

• on Hl : π(λ ,h,m) = λ ,

• on Hq : π(λ ,h,m) = 14⊗m.

For N generations o particles we enlarge the space by tensoring by CN .
The Dirac operator has a form

DF =

[
S T †

T S

]
, (2.4)

where S is expressed in terms of Yukawa mass matrices Yν ,Ye,Yu and Yd , and the operator T is
given by T νR = YRνR with YR ∈MN(C), and is zero on other fermions.

The graiding γF is acting as 1 on right-handed and −1 on left-handed particles. The real
structure JF acts by exchanging particles with antiparticles composed with the complex conjuga-
tion. It is a non-orientable (due to the existence of right neutrinos [18][6]) finite spectral triple of
KO-dimension 6.

This spectral triple is the one usually considered in the case of the Standard Model, but notice
that the choice of DF in not unique. In principle there are other possibilities and the resulting
system will still fulfilled required conditions for being a spectral triple. For example it is known
(see [10],[15]) that there is a possibility of having leptoquark fields in this theory. Since leptoquarks
are not observed in the Nature there were several attempts for introducing additional constraints
that will allow for the elimination of these Dirac operators. There was an approach based on the K-
theorethic arguments ([8],[13]). Later on, the so-called second order condition [10] and the Hodge
duality condition [11] were introduced, but none of them was fully satisfactory and in general do

2



P
o
S
(
C
O
R
F
U
2
0
1
8
)
0
4
9

Pseudo-Riemannian structure of the noncommutative Standard Model Arkadiusz Bochniak

not exclude all terms that can be the origin of leptoquark fields. In [6] we poposed an alternative
explanation of the lack of leptoquarks based on the analysis of the pseudo-Riemannian structure on
the spectral triple. We will briefly describe this approach in the forthcoming sections.

3. Pseudo-Riemannian structures

The standard notion of the spectral triple is dedicated to the description of Riemannian ge-
ometries. Nowadays, there is no analogue for the Connes’ reconstruction theorem in case of the
pseudo-Riemmanian geometry. It turns out that there is no canonical Hilbert space structure on the
space Γc(S) of compactly supported sections of the spinor bundle [2],[17]. The analytical condi-
tions for this class of triple are the most requiring one. There are several different approaches to
the incorporation of pseudo-Riemannian structures into the noncommutative geometry, e.g. one can
find some of them in two ground-breaking articles: [1] and [19]. A lot of interesting results one can
find in [20] and also in the PhD thesis written by an author of that article. For a reader interested in
this topic we recommend the overview [12] and references therein. Notice that since we are inter-
ested in finite spectral triples we do not need to concentrate on these analytical aspects and consider
only algebraic relations between some operators. We also analysed in [3] some algebraic aspects of
non-finite triples. In [6] we proposed alternative definition of the finite pseudo-Riemannian spectral
triples introduced as a generalization of that one presented in [16] in the following way.

The real pseudo-Riemannian spectral triple of signature (p,q) is a system (A,π,H,D,J,γ,β )
consisting of

(1) an involutive algebra A,

(2) an Hilbert space H,

(3) a faithful representation π of A on H,

(4) (possibly unbounded) densely defined operator D, called a Dirac operator,

(5) (for even p+q) a Z/2Z-grading γ that is selfadjoint and γ2 = 1,

(6) an antilinear isometry J,

(7) a Z/2Z-grading β that is selfadjoint and β 2 = 1

such that the following conditions hold:

(A) γ commutes with the representation of A,

(B) for all a,b ∈ A we have [Jπ(a∗)J−1,π(b)] = 0 (zeroth order condition),

(C) β commutes with the representation of A,

(D) D is β -selfadjoint, i.e. D† = (−1)pβDβ ,

(E) for every a ∈ A [D,π(a)] is bounded,

(F) Dγ =−γD,
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p−q mod 8 0 1 2 3 4 5 6 7
ε + − + + + − + +

ε ′ + + − − − − + +

ε ′′ + − + −

Table 1: KO-dimensions for a pseudo-Riemannian spectral triple.

(G) DJ = εJD, J2 = ε ′id, Jγ = ε ′′γJ, where ε,ε ′,ε ′′ =±1 define KO-dimension p−q (mod 8)
according to the table below

(H) βγ = (−1)pγβ , βJ = (−1)
p(p−1)

2 ε pJβ ,

(I) for all a,b ∈ A
[
Jπ(a)J−1, [D,π(b)]

]
= 0 (first order condition),

(J) 〈D〉=
√

1
2(DD† +D†D) has a compact resolvent,

(K) for all a ∈ A [〈D〉 , [D,π(a)]] is bounded.

We also introduced the notion of the orientability and time-orientability using Hochschild homol-
ogy. The real finite pseudo-Riemannian spectral triple is said to be orientable if there exists a
Hochschild cycle of dimension n = p+q (valued in A◦⊗A) c =

(
ai,ai

0,a
i
1, ...,a

i
n
)

i=1,...,k such that

k

∑
i=1

(
Jπ(ai)J−1)

π(ai
0)[D,π(ai

1)]...[D,π(ai
n)] =

{
γ, n-even

1, n-odd
(3.1)

The time-orientation is defined in an analogous way. We say that an operator β is a time-orientation
if it is a p-form valued in the opposite algebra, that is there exists a collection of elements from the
algebra (bi,bi

0,b
i
1, ...,b

i
p), i = 1, ...,k such that

β =
k

∑
i=1

(
Jπ(bi)J−1)

π(bi
0)[D,π(bi

1)]...[D,π(bi
p)]. (3.2)

Having a pseudo-Riemannian spectral triple TpR = {A,π,H,D,J,γ,β} of signature (p,q) we can
introduce two operators

D+ =
1
2
(D+D†), D− =

i
2
(D−D†) (3.3)

and get two Riemannian spectral triples, with Dpm as Dirac operators, that have an additional
grading β satisfying

1. β 2 = 1, β † = β ,

2. βD± =±(−1)pD±β ,

3. βγ = (−1)pγβ ,

4. βJ = (−1)
p(p−1)

2 ε pJβ .
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In [6] we have shown that constructing the operator DE = D++D− and changing the real structure
into JE = Jβ or JE = Jβγ (depending on the value of p) results in the Riemannian spectral triple
TR =(A,H,DE ,JE ,γ) with the KO-dimension dependent on the value p (mod 4). This construction
is an analogue of the Wick rotation, since the resulting signature is always (0,−(p+q)) (mod 8).

We will now briefly present two examples. The first one will illustrate the construction of Rie-
mannian triple and was considered in [3] and also depicted in our latest overview [5]. The second
one will show how the existence of β reduces classes of possible Dirac operators. It is the motiva-
tion to use this structure for the spectral triple of the Standard Model to eliminate leptoquarks.

We start with the Lorentzian spectral triple of the noncommutative torus[16]. Notice that it is
not a finite triple, but nevertheless we can discuss its algebraic relations. Let {|n,m,±〉}n,m∈Z be
the orthonormal basis of the Hilbert space `2(Z2)⊗C2 and take λ = e2πiθ ∈ C. We define A(T2

θ
)

as the algebra generated by operators U,V of the form

U |n,m,±〉= |n+1,m,±〉 , V |n,m,±〉= λ
−n |n,m+1,±〉 . (3.4)

Then there exists a time-orientable pseudo-Riemannian spectral triple of signature (1,1) with
A(T2

θ
) as an algebra and `2(Z2)⊗C2 as an Hilbert space. The Dirac operator is given by

D |n,m,±〉= (n±m) |n,m,∓〉 , (3.5)

and the time-orientation is specified by

β |n,m,±〉=±i |n,m,∓〉 . (3.6)

The rest elements of the structure are also defined by their action on the basis [3], [5].
Using the general construction we obtain

DE |n,m,±〉= (n± im) |n,m,∓〉 (3.7)

and the resulting Riemannian spectral triple is the one known as the equivariant Riemannian spec-
tral triple for the noncommutative torus[16].

The second example we already presented in [6] as the motivation for the application of this
method in the Particle Physics. We considered a triple for two-point geometry [11] and observed
that the existence of β reduces the number of parameters in the possible Dirac operators by a factor
of 2.

4. Leptoquarks

We are now ready to present the main result from [6]. We observed that for the spectral triple
for the Standard Model discussed in the section 2 there exists an operator

β = π(1,1,−1)JFπ(1,1,−1)J−1
F (4.1)

that makes the system a pseudo-Riemannian spectral triple of signature (0,2).
Moreover, this β acts as 1 on leptonic sector and −1 on quark sector. Therefore this 0-cycle

provides a natural grading that distinguishes between lepton and quarks.
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We also found all such possible 0-cycles β that commutes with the most general Dirac operator
DF and find restrictions on DF that arise from this requirement. We parametrized the Hilbert

space in a slightly different way, namely we write a typical element

[
v
w

]
∈ HF with v,w ∈M4(C)

parametrized as follows

v =


νR u1

R u2
R u3

R
eR d1

R d2
R d3

R
νL u1

L u2
L u3

L
eL d1

L d2
L d3

L

 , w =


νR eR νL eL

u1
R d1

R u1
L d1

L

u2
R d2

R u2
L d2

L

u3
R d3

R u3
L d3

L

 . (4.2)

Observing that End(HF)∼= M4(C)⊗M2(C)⊗M4(C) we rewrote every operator we had had in that
language and looked for possible β which is sum a elements of a form

β = π(λ1,q1,m1)Jπ(λ2,q2,m2)J−1 (4.3)

with λ1,λ2 ∈ C, q1,12 ∈ H, m1,m2 ∈ M3(C) and the Dirac operator of the form (which follows
from the requirement about first-order condition)

DF =

[
M

M†

]
⊗ e11⊗ e11 +

[
N

N†

]
⊗ e11⊗ (1− e11)+

[
A B

]
⊗ e12⊗ e11 +

[
A†

B†

]
⊗ e21⊗ e11,

(4.4)
where M,N,A,B ∈M2(C) and ei j is a matrix with 1 in position (i, j) and zeros everywhere else.

After some computations we deduced that the only physically accepted (i.e. with nonzero
Yukawa parameters etc.) Dirac operator is of the form above with B = 0 and A = A · diag(1,−1)
and the corresponding β has to be equal π(1,1,−1)JFπ(1,1,−1)J−1

F . The vanishing of B and some
entries of A is equivalent with the lack of leptoquarks. Moreover, the only nonzero entries of A that
are allowed are related to the sterile neutrinos.

5. Summary and outlook

We presented the approach to the Standard Model based on the consideration of pseudo-
Riemannian structures on spectral triples. The new definition of pseudo-Riemannian spectral triple
was described, together with our main result from [6]: The existence of such a structure can be
interpreted as a source of the lack of leptoquarks.

We have to mention that the generalization of these ideas into the case of non-finite spectral
triples can shed a new light on the structure of the Lorentzian formulation of the Standard Model.
We recently started the program of the reverse engineering for the Standard Model and the
preliminary results, that are contained in [3], suggest the necessity of the extension of the notion
of a spectral triple. The brief overview of this problem one can find also in [5].
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