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1. Introduction

Neutrino experiments do not exclude that additional right-handed sterile neutrinos exist. There
are many ways, inspired by theory, in which they can be discovered both in neutrino oscillations
[1, 2, 3, 4, 5, 6, 7] and collider physics [8, 9, 10, 11, 12, 13]. Their masses are practically not
limited, ranging from eV to TeV, or the Planck scale. Experiments and theoretical studies are
devoted to search for such signals. Interestingly, some present experiments and the experimental
signals suggest that the fourth type of neutrino may exist.

Namely, measurements of the ν̄e flux at small distances from nuclear reactors gives 6% less
events than expected [14]. Such a deficit referenced as a "Reactor Antineutrino Anomaly" can
be explained as active-sterile antineutrino oscillations at very short baselines [15]. Moreover, the
NEUTRINO-4 reactor experiment claims to detect an electron antineutrino to sterile neutrino os-
cillation at the 3σ significance level [16]. Most probable values for oscillation parameters are
estimated as sin2θ14 = 0.39 and ∆m2

14 = 7.34 eV2.
Gallium solar neutrinos experiments also observe less events than predicted. Deficit in data is
reported by GALEX and SAGE collaborations [17]. Statistical significance for such "Gallium
Anomalies" in terms of neutrino oscillations was recently estimated at the level of 3σ [18].
Clues for sterile neutrino oscillations exist also in the long baseline experiments. First reported ab-
normalities were reported by the LSND collaboration in 1995. More efficient analysis from 1996
showed an excess of electron antineutrinos events from the muon antineutrino beam [19]. However,
some publications cast in doubt analysis done within the LSND and its interpretation in favour of
sterile neutrinos. Reduction of the significance level below 3σ is claimed [20, 21]. Recent results
from the MiniBooNE experiment show a massive excess of electron (anti)neutrino events from the
muon (anti)neutrino beam. Surplus of (79)281 events in correspondence to predicted number of
events was reported [22].

However, discrepancies between predicted and observed data events can be explained not only
by adding new neutrinos to the existing theory. There are still many exciting possibilities such
as: resonant neutrino oscillations [23, 24, 25], Lorentz violation [26, 27], sterile neutrino decay
[28, 29] and many more.

Here we will focus on the theoretical analysis connected with deviations from unitarity of
the standard mixing matrix UPMNS. Such deviations would be a clear signal of known neutrinos
mixing with additional right-handed sterile states. We extend this kind of analysis and study how
deviations from unitarity can be defined in the framework of advanced matrix algebra using matrix
norms. The advantage of using norms instead of the maximal absolute value of the matrix is of
mathematical nature - matrix norms in a natural way reflects properties of matrices. Moreover, they
posses important properties which help with theoretical calculations and manipulation of matrices.
Most of the background for such analysis was established in [30] where a notion of singular values,
matrix norms and contraction was introduced. This machinery allows us to determine when a non-
unitary mixing matrix can describe physical phenomenon. Moreover, it is possible to define a set of
all physically admissible mixing matrices. On top of that the method of so-called unitary dilation
gives us the possibility to study in a systematic way scenarios with additional neutrinos [31].
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2. Parametrizations of the neutrino mixing matrix

To describe neutrino non-standard mixings usually two parameterizations are used, commonly
denoted by α and η [32, 33, 34, 35], defined in the following way

UPMNS = (I−η)V,

UPMNS = (I−α)W. (2.1)

Here η is a Hermitian matrix, α is a lower triangular matrix and U,V and W are unitary matrices.
The size of the deviation is described by matrices α and η . In the limit η ,α → 0, the standard
UPMNS unitary matrix is restored [36, 37, 38]. In contrast to these approaches we want to find
an optimal unitarity deviation one-parameter indicator. This value will be estimated using matrix
norms which have the property of functions to measure the "distance" between two matrices. We
will show an example of differences between norms when applied to the neutrino data.

3. Matrix norms and deviations from unitarity

Let us recall the general definition of the matrix norm. We will use it to study a deviation from
unitarity of the mixing matrix.

Definition 1. A matrix norm is a function ‖ · ‖ from the set of all complex matrices into R which
for any A,B ∈ Cn×n and any α ∈ C satisfies the following conditions:

1. ‖A‖ ≥ 0 and ‖A‖= 0⇔ A = 0

2. ‖αA‖= |α|‖A‖

3. ‖A+B‖ ≤ ‖A‖+‖B‖

4. ‖AB‖ ≤ ‖A‖‖B‖

As in the case of the "normal" vector norms there are plenty of matrix norms, each useful for
a different application. We will not discuss here all of them but it is important to mention that all
of them are equivalent which means that for a given matrix A ∈ Cn×m any two matrix norms ‖ · ‖a

and ‖ · ‖b satisfy

k‖A‖a ≤ ‖A‖b ≤ s‖A‖a (3.1)

where k, l are positive numbers.

Specific matrix norms are used in many different applications, especially in data analysis,
economics, optimization and image processing [39, 40, 41, 42].
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Some representative examples of the matrix norms are the following

1. Operator norm (ON): ‖A‖2 = max‖x‖2=1‖Ax‖2 = σmax(A). (3.2)

2. Frobenius norm (FN): ‖A‖F =
√

Trace(A†A) =

√
n

∑
i=1

m

∑
j=1
|ai j|2 =

√√√√min{n,m}

∑
i=1

σi(A)2. (3.3)

3. Maximum absolute column sum norm (MACN): ‖A‖1 = max
j

m

∑
i=1
|ai j|. (3.4)

4. Maximum absolute row sum norm (MARN): ‖A‖∞ = max
i

m

∑
j=1
|ai j|. (3.5)

Now we are ready to define the way to measure the deviation from unitarity of the mixing matrix.

Definition 2. Let A ∈ Cn×n be a given matrix and let ‖ · ‖ be any matrix norm then the function

‖I−AA†‖ (3.6)

measures how far A is from the unitary matrix.

4. Structure of a physical region for neutrino mixing matrices

Not all matrices that deviate from unitarity can describe physical mixing. Whether a matrix
can be treated as physical is determined by the probability of transition between flavour states. In
oscillations we cannot lose neutrinos which means that the probability of transition from a given
state to any other must be one. This is ensured by the unitarity of the mixing matrix. Thus phys-
ically admissible mixing matrices must be either unitary or can be extended to the unitary matrix.
Such matrices are known as contractions, i.e., the matrices with the largest singular value less or
equal to one, symbolically σmax(A)≤ 1. On the other hand we have bounds for mixing parameters
obtained from experiments. These two requirements together give us the definition of the physical
region. A region of physically admissible mixing matrices is defined as a convex hull spanned on
all 3-dimensional unitary matrices with parameters bounded by experiments or equivalently as a
set of all convex combinations of these unitary matrices. Thus the formal definition looks in the
following way

Ω = {
M

∑
i=1

αiUi|Ui ∈U3×3,α1, ...,αM ≥ 0,
M

∑
i=1

αi = 1,

θ12,θ13,θ23 and δ restricted by experiments}.
(4.1)

It can also be seen as an intersection of the unit ball with respect to the Operator norm with the
hyperrectangle determined by experimental ranges. The formal definition of the physical region Ω

opens a possibility for further interesting studies and better understanding of the neutrino mixing.
The first issue is the shape of the physical region. Since the mixing matrices are 9-dimensional
objects (real or complex) the exact shape of Ω is not possible to visualize. However we could gain a
great chunk of information by projecting this region onto two or three dimensional subspaces. This
problem can be solved by incorporating methods of Semidefinite Programming (SDP) [43, 44]. The
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next issue concerns possible extensions of the Standard Model by introducing sterile neutrinos. It
is known that the number of singular values strictly less than one controls the smallest possible
unitary extension of the 3-dimensional mixing matrix, i.e. the number of additional neutrinos
[30]. Thus the collection of matrices that allow the smallest unitary dilation with one, two or three
sterile neutrinos divides the region Ω into three disjoint subsets. It is interesting how these subsets
are distributed within Ω. Are they distributed randomly or they clustered? Visualization of the
physical region mentioned before can also be helpful. The next important issue is the entrywise
characterization of contractions. This will allow to construct matrices from Ω in a simple way and
give entrywise description of this region. There are more open issues about the region of physically
mixing matrices like: what is the minimal number of unitary matrices necessary to cover the whole
region.

5. A numerical example

In what follows, let us construct a matrix from the region Ω as a convex combination of unitary
UPMNS matrices and determine its deviation from unitarity using different norms introduced before.
All calculations have been done with 16 digits precision. However, we will keep 4 significant digits
for all numbers given, as an accuracy which can be achieved for error estimation (0.003) in such
analysis is at the same level [30]. The matrix V from the physical region Ω is constructed as the
convex combination of 3 unitary UPMNS matrices characterized by the following sets of mixing
parameters:

U1 : θ12 = 0.5681, θ13 = 0.1425, θ23 = 0.7277,

U2 : θ12 = 0.5973, θ13 = 0.1539, θ23 = 0.6998,

U3 : θ12 = 0.6279, θ13 = 0.1429, θ23 = 0.9219.

(5.1)

Thus the matrix V is the following sum

V = α1U1 +α2U2 +α2U2, (5.2)

where the coefficients are

α1 = 0.315, α2 = 0.313, α3 = 0.372. (5.3)

Such a convex combination gives the following mixing matrix

V =

 0.8166 0.5580 0.1457
−0.4781 0.5200 0.7000
0.3158 −0.6406 0.6919

 . (5.4)

Let us first check if this matrix is a contraction. To do this we calculate a set of its singular values

σ(V ) = {0.999,0.994,0.994}. (5.5)

The largest singular value is less than one, therefore the matrix V is a contraction. Although the
result can suggest that taking an error into account the σ1(V ) can possible take the value above
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one, this is not the case since the construction (4.1,5.2) impose the contraction property. Now let
us study deviation from unitarity for this matrix using functions introduced in the Definition 2.

‖V‖2 = 0.0114,

‖V‖F = 0.0160,

‖V‖1 = 0.0131,

‖V‖∞ = 0.0131,

max|V | = 0.0111. (5.6)

We can see that for the considered example, besides MACN: ‖ · ‖1 and MARN: ‖ · ‖∞ defined
in (3.4, 3.5), other norms give different results. MACN and MARN norms give the same result
because we calculate unitarity deviations for the symmetric matrix VV †. The definitions (3.4, 3.5)
suggest that these two specific norms can be used to measure in a simple way the largest unitary
deviation among mixings with particular flavor or massive states. Unfortunately, this is not the case
because in the product VV † these states are mixed. However, information about unitarity deviations
on the level of flavors states is gathered by the diagonal elements of VV †. Similarly, information
about unitarity deviations on the level of massive states is given by the diagonal elements of V †V . It
is necessary to check whether these elements satisfy requirements of the matrix norm. If not, they
are still attractive functions to use in the case of neutrinos as the measure of the unitarity deviation
on the levels of flavour and massive states but additional numerical and mathematical studies are
necessary. If we are interested in the absolute deviation from unitarity the Frobenius norm should
be the proper choice as it takes the whole structure of the matrix into account.

6. Summary

Matrix theory and matrix analysis are fruitful areas of mathematics with a broad range of
applications. They can also be used to give new insights into neutrino mixings analysis [30]. Here
we have discussed a notion of matrix norms and their application in the calculation of deviation
from unitarity of the neutrino mixing matrix. In general, different norms give different numerical
estimates. We have made a rough estimate which one would be optimal for the unitary deviation of
the neutrino mixing matrix. The example shows that the Frobenius norm gives the largest numerical
value of the deviation. This agrees with the definition (3.3) because it takes into account all entries
of the matrix. That is why the Frobenius norm seems to be a right choice to be taken if the overall
amount of the unitarity deviation of the mixing matrix is discussed. The usual way of calculating
the unitary deviation using the maximum of absolute value is very close to the result given by the
Operator norm (3.2). In the current form of the Definition 2 (3.6) the MACN and MARN norms
(3.4, 3.5) do not give expected information.

The ultimate goal in the issue of determining the deviation from unitarity would be a method
to compute it just from the initial matrix without necessity of its Hermitian product VV †, which
is closely related to the problem of the entrywise characterization of contractions. This together
with other issues brought up by us should result in a deeper understanding of the structure of the
physical region Ω.
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