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1. Introduction

Twenty years ago a big breakthrough has been made in cosmology as a result of the signifi-
cant observational discovery [1, 2], indicating that there is an ongoing accelerating expansion of
the universe which started before its thermalisation. According to the standard interpretation this
implies that the universe is entering an era dominated with dark energy permeating all of space. In
the framework of Einstein’s general relativity, dark energy can be accounted for by a positive value
of the cosmological constant Λ with a present day value of Λ ≈ 10−120M4

P where MP is the four-
dimensional Planck mass. In the context of effective field theories, the simplest scenario describing
the essential features of these facts, consists of a scalar field φ acquiring a potential V (φ) with pos-
itive vacuum energy equal to the cosmological constant. That is, a model with a scalar potential
possessing a stable or metastable de Sitter (dS) vacuum. Provided some additional requirements
are fulfilled, the potential V (φ) could be appropriate to successfully realise slow roll inflation with
the scalar φ field playing the rôle of the inflaton field.

L

V(f)

f

Figure 1: Potential with a local minimum and a positive cosmological constant

The embedding of such a scenario in a string theory cosmological framework is one of the key
challenges today (see [3] for a review). String compactifications are characterised by the appear-
ance of a large number of moduli fields 1 and the question is whether some of these moduli could
be appropriate inflaton candidates.

In string compactifications the ten-dimensional space-time is assumed to be a direct product of
the four-dimensional Minkowski spacetime and a six-dimensional Calabi-Yau (CY) manifold char-
acterised by a compact ‘radius’ R. The classical supergravity equations, however, remain invariant
under rescalings of the size R of the compact manifold. Consequently, for any solution which de-
termines four dimensional effective theory models such as the Standard Model, we encounter a
family of solutions by just changing the parameter R. In fact, from the four-dimensional theory
point of view, R corresponds to a massless scalar field.

In general, deformations of the compactification in four dimensions correspond to massless
scalars which do not acquire tree-level potential and do not affect the four-dimensional action.
Such scalars are the dilaton field, the Kähler and complex structure moduli, those corresponding
to brane deformations etc. The appearance of such massless scalars in the effective theory have
singificant consequences. If they couple gravitationally to matter fields, they could mediate long

1For reviews in string compactifications see [4]-[5].
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range forces which have not been observed. They also affect the big-bang nucleosynthesis and
have implications on the cosmological evolution. Therefore, to construct a realistic effective field
theory model, it is important to generate a potential with de Sitter vacuum and assure a positive
mass-squared for the various moduli at large enough volume to allow perturbative calculation. This
is dubbed as the “moduli stabilisation” problem.

Because there are a large number of choices of CY manifolds and quantised fluxes which
determine the properties of the effective field theory and, particularly, the scalar potential, string
theory is characterised by a vast number of vacua, which constitute the so called “string land-
scape”2. However, whether there exist any de Sitter vacua amongst the plethora of possibilities
is a long standing issue and the subject of an ongoing debate today. The string computational
tools used to determine their existence are mainly the various moduli fields, the Kähler potential
and the flux-induced superpotential in the effective field theory limit obtained after compactifi-
cation. Since the tree-level potential for moduli fields vanishes identically, possible interesting
non-zero contributions are based on α ′ and string loop corrections as well as on non-perturbative
effects. Notwithstanding the accumulated work and the variety of models that have appeared the
last decades providing evidence for the existence of the desired dS vacua, most -if not all- proposed
solutions are based on assumptions and ingredients that might not be supported in a fully fledged
string theory construction. These doubts are corroborated by the fact that a number of no-go theo-
rems (see for example [7, 8, 9] ) preclude the existence of dS vacua, although at the classical level
and under certain assumptions that may not be universally true in string theory.

On the other hand, recently, some criteria on the (non)-existence of dS vacua in string theory
have been proposed. The swampland conjecture suggested by the authors [10, 11] states that the
scalar potential V of any effective field theory consistent with string theory satisfies the bound

|∇V |
V
≥ c

MP
(1.1)

where c is a positive constant of order one. This bound excludes stable or meta-stable de Sitter
string vacua and, if true, it suggests that the latter belong to the swampland. In a standard inflation-
ary scenario this essentially means that the slow-roll parameter ε is violated at order one.
Then, in the string framework the alternative interpretation of the present day value of the cosmo-
logical constant is through quintessence, provided the potential is positive, V > 0, and |∇V | ∼V (for
a review in quintessence see for example [12] and in the context of strings [13]). Counterex-
amples explaining how the bound (1.1) could be evaded have been proposed (see for exam-
ple [14, 15, 16, 17]. However, the authors [18] (see also [19, 20]) proposed a refined version of the
conjecture, according to which the potential must satisfy either the bound (1.1) or the constraint
associated with the minimum value of the mass spectrum:

min(∇i∇ jV ) ≤ − c′

M2
P

(1.2)

Here, c′ is a positive constant of order one. The two bounds together, still forbid de Sitter minima
but allow the existence of maxima.

2For a recent update regarding supporting evidence see also [6]
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In the ensuing years after the experimental confirmation of the accelarating expansion of the
universe, there has been a lot of activity to construct effective theories of string origin with de Sitter
vacua. However, the moduli space and the induced action used to determine the four-dimensional
vacua are not exactly known and the proposed models are based on assumptions regarding the
significance of the various quantum corrections. Focusing on type IIB effective string theories in
particular, the usual procedure in obtaining vacua is based on flux compactifications with α ′ and
loop corrections playing a central rôle in moduli stabilisation. However, two of the most questioned
ingredients introduced are the non-perturbative corrections in the superpotential and the uplifting
term (to ensure a dS vacuum) obtained from anti-D3 (D3) branes.

The focus of this talk is on this issue. That is, to examine alternative solutions to the problems
of moduli stabilisation and to consolidate a de Sitter vacuum based only on perturbative corrections.
The layout of the talk is organised as follows. It will start with a short presentation of the string
derived no-scale effective supergravity mainly focusing on the description of the moduli space, the
flux induced superpotential and the Kähler potential in the context of type IIB theory. Next, a short
description of the rôle of non perturbative effects on moduli stabilisation will be given and two
familiar models proposed some 15 years ago will be briefly outlined. Afterwards, a new solution
to the problem of moduli stabilisation based only on perturbative corrections in the presence of
7-branes will be presented in some detail. The presentation will resume with a brief exposition of
the cosmological implications of this model. More precisely it will be shown that, in the presence
of a new Fayet-Iliopoulos term, the slow-roll inflation scenario can also be realised.

2. The general type IIB set up

In this talk we will discuss the issues of moduli stabilisation, de Sitter vacua and inflation in
a type IIB/F-theory framework 3. We will start with a presentation of the basic elements used to
obtain the scalar potential of the effective 4d field theory, concentrating on the bosonic spectrum
and the moduli space. The type IIB spectrum is obtained by combining left and right moving
sectors with Neveu-Schwarz (NS) and Ramond (R) boundary conditions. The bosonic spectrum
includes the graviton gµν , a scalar φ (the dilaton), the two-index antisymmetric tensor Bµν -the so
called Kalb-Ramond (KB) field, and the p-form potentials Cp, p= 0,2,4. The axion and the dilaton
fields are combined to form the axion-dilaton

S =C0 + ie−φ (2.1)

In addition, various other geometric moduli corresponding to the deformations of the metric gµν

emerge which are related to the shape, size and other properties of the compactification manifold.
In particlular, these are classified as follows:

1. Kähler moduli T a corresponding to deformations of the Kähler form J = igi j̄dzi ∧ dz̄ j̄ →
T aωa, where ωa, a = 1,2, . . . ,h1,1 is a basis for harmonic (1,1)-forms.

2. Complex Structure moduli zb, b = 1,2, . . . ,h2,1 being harmonic (2,1)-forms, corresponding
to deformations associated with a (3,0)-form, denoted with the greek letter Ω. Clearly, the
latter depends on the complex structure moduli Ω = Ω(za)

3For F-theory reviews see [21, 22, 23].
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3. Scalar fields ba,ca,ϑ a arising from the expansion of the B2,C2,C4 potentials in the appropri-
ate basis of harmonic forms.

4. Moduli associated with D7 brane deformations, D3 positions etc.

In order to describe the four dimensional effective supergravity limit of type IIB string, we
need to derive the superpotential and the Kähler potential.
In type IIB string theory the superpotential is generated by 3-form fluxes which are constructed
from the KB-field and the Cp potentials. The latter give rise to the field strengths

Fp := dCp−1, H3 := d B2 , (2.2)

From these, the following combination is assumed

G3 := F3−SH3 , (2.3)

where S is given in (2.1). Using the holomorphic (3,0)-Ω form, the flux induced superpotential is

W0 =
∫

G3∧Ω(za) , (2.4)

while G3 should be primitive (2,1) form to allow N = 1 supersymmetry. The superpotential (2.4)
depends on the compex structure moduli za through its Ω dependence but it does not involve the
Kähler structure moduli. To ensure the flatness of the superpotential, we impose the supersymmet-
ric conditions, setting zero the covariant derivatives with respect to the za and S fields:

DzaW0 = 0, DSW0 = 0 . (2.5)

The solutions of these equations stabilise the complex structure moduli and the axion dilaton field.
Both are assumed to obtain masses of the order of the string scale, while W0 becomes a constant.
However, because the Kähler moduli do not participate in W0, at this stage, they remain completely
undetermined.
Next we proceed with the second significant ingredient of the theory, namely the Kähler potential.
Ignoring for the moment any quantum corrections, the classical Kähler potential K is given by the
formula

K = −
3

∑
i=1

ln(−i(Ti− T̄i))

− ln(−i(S− S̄))− ln(i
∫

Ω∧ Ω̄) · (2.6)

In (2.6) we have assumed the contribution of three Kähler moduli fields, Ti, i = 1,2,3 and S is the
axion-dilaton defined in (2.1). Moreover, Ω = Ω(za) , is the holomorphic (3,0)-form [24], already
introduced previously, whilst Ω̄ stands for its corresponding antiholomorphic one.
From (2.6), we can compute the scalar potential, using the standard supergravity formula

V = eK (∑
I,J

DIW0K
IJ̄DJ̄W0−3|W0|2) (2.7)

4
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The sum is under all moduli fields, (za,Ti,S), while KIJ̄ = ∂I∂J̄K and K IJ̄ its inverse. Due to no-
scale structure, at the classical level, this is identically zero and this can be easily seen by splitting
the sum into that of the Kähler moduli and the rest moduli fields:

V = eK
∑

I,J=za,S 6=Ti

DIW0K
IJ̄DJ̄W0 (DIW0 = 0, flatness)

+eK

(
∑

I,J=Ti

K IJ
0 ∂IW0∂JW0−3|W0|2

)
(= 0, noscale)

= 0

The first line is zero due to supersymmetric conditions (2.5) which fix the scalars za,S while the
second line vanishes identically in no-scale models. Hence, at this level a scalar potential with zero
vacuum energry is obtained and the Kähler moduli remain unfixed.

3. Non Perturbative Corrections

Up to this point we have seen that it is not possible to stabilise all moduli and construct a
potential with dS minimum at the classical level. To circumvent this problem, most of the sug-
gested solutions rely on non-perturbative corrections to the superpotential . (Recall that perturative
corrections in W0 are not allowed because of non-renormalisation theorems.) For the sake of com-
pleteness of the presentation, two representative solutions will be briefly sketched, namely, A ) the
KKLT model and B) the large volume scenario (LVS).

Case A : In the simplest version of the model [25], one assumes corrections of the form

W = W0 +Ae−λT (3.1)

A possible origin of these corrections come from a stack of N 7-branes, wrapping 4-cycles, and it is
associated with N = 1 supersymmetric SU(N) symmetry. In this case gaugino condensation can
take place and the constant λ is given by λ = 2π/N, for SU(N). This way, the supersymmetric con-
dition DT W = 0 stabilises the T -modulus, however, this solution requires unnatural fine-tuning
of the parameters W0, A and λ . Moreover, the so obtained vacuum has an AdS (supersymmetric)
minimum

VAdS ∝−3|W |2eK <0 , (3.2)

in obvious conflict with the cosmological observations which imply Λ > 0.
A solution to this problem is obtained by uplifting the vacuum to a dS minimum with the inclusion
of a positive contribution VD3 coming from D3 branes, so that the total contribution equals the
cosmological constant

VD3−|VAdS| ≈ 10−120M4
P (3.3)

The D3’s source of positive energy comes from D3 tension and the 3-form fluxes are introduced
to cancel the Tadpole. Indeed, for N3(N̄3) number of D3(D3) branes the charge Q3 = N3− N̄3 is
determined by the global tadpole condition

χ(X)

24
= Q3 +

1
2κ2

10T3

∫
H3∧F3 , (3.4)

5
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where, in an F-theory framework, χ(X) is the Euler characteristic of the CY fourfold X =CY4, and
T3 is the tension of the D3-brane. Now, according to Klebanov-Strassler’s description [26], charge
conservation is imposed by assuming appropriate M and−K units of charge

∫
A F3 = 4π2M,

∫
B H3 =

−4π2K, where the integrals are over the A-cycle and its dual B-cycle respectively. In addition, the
fluxes generate a superpotential for the complex structure moduli [27]. The positive energy of the
D3 depends on the warp factor eA:

VD3 = 2µe4A, ds2
10 = e2Adx2

4 + e−2Ady2
6 .

However, as pointed out in the above references (see [27, 28]), the supersymmetry preserved by
the D3 branes is incompatible with the global supersymmetry preserved by the imaginary self-dual
3-form flux of the background geometry and as a result, this configuration is unstable.

Another way to parameterise the uplifting of an AdS vacuum of the potential to a de Sitter one,
is by using nilpotent chiral multiplets. In this version of the KKLT construction a goldstino multi-
plet SNL = s+

√
2θG+θ 2FS satisfying the constraint S2

NL = 0 associated with non-linearly realised
supersymmetry of the Volkov-Akulov type is introduced 4. In this framework, the superpotential
and the Kähler potential are [29, 30]

W = W0 +Ae−λT +µ
2SNL (3.5)

K = −3 ln(T − T̄ )+SNLS̄NL (3.6)

where, as above, T is the Kähler modulus associated with the volume and SNL the nilpotent gold-
stino superfield S2

NL = 0. Computing the scalar potential, one finds 5

Vnew =VAdS +Vup =VAdS +
µ4

(T + T̄ )3 (3.7)

Therefore, the existence of a nilpotent goldstino implies an uplifting term exactly as the one ob-
tained by the D3 brane. The important difference is that now this is manifestly supersymmetric.
However, given the doubts whether these features can be part of a realistic string scenario and the
amount of fine-tuning required, the importance of these effects on the determination of a true de
Sitter vacuum remains distinctly nebulous.

Case B: The Large Volume Scenario (LVS) [34] can be thought as a generalisation of the above
constructions, aiming to improve some of the aforementioned deficiencies. This proposal is also
based on the assumption of non-perturbative corrections to the superpotential but it is realised with
an exponentially large volume. In the simplest version the volume is given by V = τ

3/2
b − τ

3/2
s

where τb,τs, ( for a generalisation see [35]) are two distinct Kähler moduli. The superpotential and
Kähler potential are given by

WLV S = W0 +Ae−λτs , (3.8)

KLV S =−2ln(τ
3
2

b − τ
3
2

s +ξ ) . (3.9)

4for recent studies of nilpotnet goldstino see [31, 32, 33].
5In the warping case we have instead K =−3 ln(T + T̄ +SS̄) and Vup =

µ4

(T+T̄ )2 .
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The new ingredient in the Kähler potential is a constant ξ which arised due to α ′ corrections, and
it is proportional to the Euler number [36]

ξ =− ζ (3)
4(2π)3 χ (3.10)

Both, gaugino condensation and the α ′ correction ξ are required to stabilise the Kähler moduli
τb,τs. However, as in KKLT scenario (case A ), a mechanism is required to uplift the potential to
a dS minimum. This can be done by introducing gauge field fluxes on D7-branes which induce a
D-term potential in the effective four dimensional model [37].

4. Perturbative moduli stabilisation

In the rest of this talk, an alternative scenario of Kähler moduli stabilisation will be presented
which does not rely on any uncontrolable non-perturbative terms in the superpotential. Earlier
computations [38, 39] focused on one-loop corrections in the string coupling and contributions to
order α ′3 [40] breaking the no-scale invariance of the Kähler potential. However, it was realised
that these are not capable of stabilising the volume and the Kähler moduli Ti in general, unless
a Ti-dependent superpotential is assumed. Instead, the proposed mechanism can be realised in a
type IIB/F-theory framework and relies on the presence of logarithmic corrections induced by D7-
branes [41] in the 4d effective action. At the end of this talk it will be shown how the incorporation
of a new Fayet-Iliopoulos (FI)-term [42] will allow for a slow-roll inflation.

To be more specific, a geometric configuration of three intersecting 7-branes with fluxes will
be considered with the corresponding Kähler moduli fields denoted as Ta = τa+ iba. We begin with
the description of the basic ingredients. It is known that when O(α ′3) corrections are taken into
account, the definition of the four-dimensional dilaton φ4, in terms of the ten-dimensional one, is
given by

e−2φ4 = e−2φ (V +ξ ) (4.1)

where V is the CY volume and ξ the constant (3.10) which is proportional to the Euler number.
To express the volume in terms of the Kähler moduli we introduce the following notation:
We denote with va the 2-cycle volume modulus transverse to the D7a brane and, assuming three
intersecting branes, the total volume is given by

V =
1
6

κabcvavbvc , (4.2)

where κabc are intersection numbers. The world volume associated with the D7 brane is defined by

τa =
1
6

κabcvbvc , (4.3)

Taking into account the α ′3 corrections in type IIB, the Kähler potential is given by the formula

K =−2ln(e−2φ (V +ξ ))− ln
(∫

Ω∧ Ω̄

)
+ constant (4.4)

7
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In order to convert (4.1) in the Einstein frame, we define

v̂a = vae−φ/2 =
τa

g1/2
s

, ξ̂ = ξ e3φ/2 = ξ g3/2
s . (4.5)

Then, in terms of (4.5), expression (4.1) is written

e−2φ4 = e−
1
2 φ

(
V̂ + ξ̂

)
,

where V̂ = 1
6 κabcv̂av̂bv̂c. Then the Kähler potential takes the form:

K =− ln(S− S̄)−2ln(V̂ + ξ̂ )− ln
(∫

Ω∧ Ω̄

)
+ constant , (4.6)

where use has been made of the relation S− S̄ ∝ e−φ derived from (2.1).
The specific form (4.6) of the Kähler potential in type IIB can be confirmed by a T-duality

transformation [43] from that of type IIA.

4.1 Logarithmic loop corrections and D-terms from D7-branes

D7 and D3 branes are essential elements in configurations aiming to describe viable effective
field theories derived from type IIB flux compactifications and its F-theory geometric analogue.
Their deformations are important ingredients of the moduli space and could be useful to ensure
a successful inflationary scenario and a stable de Sitter vacuum. In such configurations, branes
which span different dimensions of the compact space intersect each other and, depending on the
details of the geometry and fluxes, may be associated with anomalous U(1) symmetries. Then, the
resulting chiral spectrum of the four dimensional effective theory induces Fayet-Iliopoulos D-terms
in the effective potential. Based on these observations, in the following, we will examine the rôle of
intersecting D7 brane configurations in moduli stabilisation, de Sitter vacua and slow roll inflation.

We start with the observation that in the large volume limit, a nonvanishing ξ correction gives
rise to localised graviton kinetic terms in the Calabi-Yau compact manifold at the points where
the Euler number is concentrated. As discussed in [44], this implies a localised Einstein action
and there is an emission of closed strings from the associated graviton vertices into the various D
branes of the assumed geometric configuration, giving rise to local tadpoles. In the case of D7
branes, closed strings propagating in the the two-dimensional transverse space induce an infrared
divergence which exhibits a logarithmic dependence in the regime of large transverse volume of
codimension two [41]. Due to the infrared divergence, one could also expect that it is the dominant
correction at that order in the string loop expansion. For the simplest case of a single D7 brane,
denoting the size of the transverse dimensions with u, the corresponding loop correction takes the
form

δ = γ ln(u) , (4.7)

where γ is a model dependent parameter. These corrections, together with the α ′ corrections dis-
cussed earlier, appear in Einstein kinetic terms in S :

S =− 1
2κ2

4

∫
d4x
√
−g
(
e−2φ (V +ξ )+δ

)
R+ · · ·

8
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The Kähler potential takes the form [43]

K =− ln(S− S̄)−2ln(V̂ + ξ̂ + δ̂ )− ln
(∫

Ω∧ Ω̄

)
+ constant , (4.8)

where δ̂ = δg1/2
s . One can notice that both ξ and δ corrections break the no-scale form of the

Kähler potential.

D
7

u

t

Figure 2: Sting loops from exchange of closed strings between graviton vertices and D7-branes when ξ 6= 0.

Next, we describe the second important effect of the D7 branes which are associated with anoma-
lous U(1) symmetries. As already mentioned, there is an induced D-term which has the generic
form dictated by the effective N = 1 supergravity [37, 45, 46, 47]:

VD =
g2

D7
2

(
iQ∂T aK (T a)+∑

J
QJ | 〈φ J〉 |2

)2

(4.9)

The gauge coupling is fixed by the kinetic function: 1
g2

D7
= Im(T a) and φ J are scalar components

of superfields whose charges QJ are subject to anomaly cancellation conditions, which are auto-
matically satisfied in a consistent string background [48, 49]. Although in general the VEVs of the
scalar fields may be non-zero, for our present purposes we can ignore the matter fields and write
(4.9) as follows

VD =− da

2Im(T a)
(∂T aK (T a))2 , (4.10)

in which da = Q2.
Before we start a detailed analysis of the model, it is important to set out the basic features

required for an acceptable dS vacuum. We have seen that at the classical level the effective po-
tential vanishes due to no-scale properties and flatness conditions. The inclusion of perturbative
moduli-dependent quantum corrections in the Kähler potential should induce contributions to the
scalar potential, V (t) with t = (τ,u). The validity of perturbation theory implies that such correc-
tions should vanish for t→∞ and therefore limt→∞V (t)→ 0. If the zero at infinity is reached from
negative values, then, for reasonable potentials, this implies an AdS minimum which is not accept-
able. Thus, the vanishing of the potetnial at infinity should be approached from positive values.
Again, for non-contrived structures of the potentials 6, this implies that there should be somewhere
a maximum before a dS minimum is formed. This is plotted in figure 3.

6For more involved cases see for example [29].
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Figure 3: Anticipated shapes of the scalar potential including moduli-dependent perturbative corrections
plotted vs the modulus t. Left: a typical potential with AdS minimum. Right: Imposing the condition
limt→∞ V (t)→ 0 and the requirement of de Sitter minimum, imply also a maximum at some finite t.

4.2 D7 Branes and Moduli Stabilisation

Having determined the form of the perturbative quantum corrections arising in the presence
of D7 branes, we can investigate their rôle in the effective theory. It can be shown [43] that the
stabilisation of the Kähler moduli requires at least three magnetised 7 branes intersecting each
other. Therefore, we consider here directly the effects of three D7 branes. We introduce three
Kähler moduli T1,T2,T3 and express the internal 6d volume in terms of their imaginary parts τk =
1
2i(Tk− T̄k). We first recall that the volume is given by (4.2). Given also the relation (4.3), we can
write

V = (τ1τ2τ3)
1
2 · (4.11)

In terms of (4.11), the Kähler potential is written as follows

K = −2ln

(
(τ1τ2τ3)

1
2 +ξ +

3

∑
k=1

γk ln(τk)

)
, (4.12)

where γk are model dependent coefficients of order one. For simplicity we take γ1 = γ2 = γ3 ≡ γτ ,

and absorb the α ′ corrections, ξ , into the logarithmic term by a new parameter µ = e
ξ

2γτ so that

ξ +2γτ ln(V ) = 2γτ ln(µV ) . (4.13)

The F-term potential is

VF = 3γτW 2
0

2(γτ +2V )+(4γτ −V ) ln(µV )

(V +2γτ ln(µV ))2 (6γ2
τ +V 2 +8γτV + γτ(4γτ −V ) ln(µV ))

, (4.14)

and in the large volume limit with small logarithmic corrections, can be approximated by

VF ≈ 3W 2
0 γτ

ln(µV )−4
V 3 · (4.15)

D-term contributions to the effective potential in the presence of D7 fluxed branes take the form

VD =
3

∑
a=1

da

τa

(
∂K

∂τa

)2

≈
3

∑
a=1

da

τ3
a
, (4.16)
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where the approximation holds in the large volume limit.
Hence, when both, F- and D-term contributions are taken into account, in the large volume expan-
sion, the effective potential is as follows

Veff ≈ 3W 2
0 γτ

ln(µV )−4
V 3 +

di

τ3
i
+

d j

τ3
j
+

dk(τiτ j)
3

V 6 ,

for i 6= j 6= k 6= i. There are three independent variables τ1,2,3 and the product of them is related
to the 6d-volume. We replace one of the τi’s with the total volume V and minimise the potential
with respect to V and the two remaining Kähler moduli. Two minimisation conditions determine

the ratios between the moduli,
(

τi
τ j

)3
= di

d j
and the third one the total volume. Expressed in terms

of the stabilised total volume V , the conditions for the two τi can be written as

τ
3
i =

(
d2

i

dkd j

) 1
3

V 2 ·

The minimisation condition for the total volume reads:

13
3
− lnV =

2
3

d
γ

V . (4.17)

Inserting the three conditions in Veff we obtain the simple form

Veff ≈ γ
ln(µV )−4

V 3 +
d

V 2 , (4.18)

with

d = 3(d1d2d3)
1
3 ; γ = 3W 2

0 γτ · (4.19)

The above scalar potential possesses a dS minimum in some region of the parameter space [43]. To
show this, we introduce the convenient definition:

w =
13
3
− lnV . (4.20)

Then, vanishing of the derivative of the potential with respect to V (i.e. condition 4.17), takes the
form:

wew = z . (4.21)

where, in the present case the variable z is related to the ratio of the two constants,

z =
2
3

d
γ

e
13
3 . (4.22)

Inversion of (4.21) determines w and consequently V through (4.20). The final solution given by
multivalued Lambert W -function [50]

w⇒W (z) . (4.23)

The two branches of the Lambert function W0(z) and W−1(z) are shown in figure 4. Real values of
W0,W−1 are obtained for z≥ z0 =−e−1.
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W0(z)

W-1(z)

z-axis
LambertW-function: z=WeW

z0=
1

e

-0.6 -0.4 -0.2 0.0 0.2

-7

-6

-5

-4

-3

-2

-1

0

W0(z)

W-1(z)

zm=
2 d

3

e
13/3

max

min

-0.6 -0.4 -0.2 0.0 0.2

-7

-6

-5

-4

-3

-2

-1

0

Figure 4: Left: The two branches of the Lambert W -function, W0 and W−1, respectively. Right: The two
values of the world volume V for fixed d/gamma ratio, corresponding to the minimum and the maximum
of the scalar potential.

Furthermore, the values of the parameters d and γ , whose ratio determines z, must be such that the
scalar potential V = V (V ) has a minimum and a maximum w.r.t. the volume V , or equivalently
w.r.t. to the function W (z) as can be inferred from their relation, see (4.20) and (4.23). Thus, we are
interested for solutions such that z (determined from the ratio of parameters d and γ , see Eq (4.22)),
falls in the range where, simultaneoulsy two solutions for the volume can be obtained. In the right
hand side of figure 4 the vertical line represents any value of zm = 2d

3γ
e

13
3 between

−e−1 ≤ 2d
3γ

e
13
3 ≤ 0 , (4.24)

where Vmin and Vmax can coexist. The maximum of the scalar potential corresponds to the intersec-
tion of the zm line with the branch W−1(zm) whilst the minimum is determined by the intersection
of zm with W0(zm).

The requirement for de Sitter vacua puts additional restrictions. To implement this constraint,
we first compute the minimum value of the scalar potential. The volume at the minimum is

V0 = e
13
3 −W0(

2
3

d
γ

e
13
3 )

We substitute V0 in Veff =VF +VD and require Veff to be positive:

V min
eff =

γ

V 3
0
+

d
V 2

0
> 0

This constraint puts an upped bound on the ratio d
γ
. Combined with the lower bound on z in (4.24),

we obtain the range

−7.242 < 103 d
γ
<−6.738 · (4.25)

5. Slow roll inflation

As is well known, slow-roll inflation occurs by a scalar field φ , dubbed the inflaton, which
starts from the top of the potential V (φ) rolling down slowly compared to the expansion of the
Universe. The equation of motion is

φ̈ +3Hφ̇ +V ′(φ) = 0 , (5.1)
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where the derivative V ′ is w.r.t φ . The expansion of the universe H = ȧ
a is involved in the friction

term and its derivative implies ä
a = Ḣ +H2 = H2(1− ε), where ε = − Ḣ

H2 is one of the slow roll
parameters. In order to have accelarated expansion, ä > 0, this must be bounded in the region
0 < ε < 1. Furthermore, to ensure slow rolling with almost constant velocity of the inflaton along
the potential, a second condition should be imposed: φ̈ � |Hφ̇ |. This is associated with a second
slow roll parameter η =− φ̈

Hφ̇
< 1. Under the above conditions the equation of motion (5.1) can be

approximated 3Hφ̇ ≈−V ′(φ).
To study cosmological inflation in the present model, we are led to identify the inflaton field

with the compactification volume modulus V . To this end, in order to obtain a canonically nor-
malised kinetic term, we perform a suitable transformation of the Kähler moduli fields. It turns out
that the appropriate transformation is [51]

ti =
1√
2

ln(τi) , (5.2)

Next, we switch to the normalised real scalar fields and define a convenient basis in terms of the
normalised volume t :

t =
1√
3
(t1 + t2 + t3) =

√
6

3
ln(V ) , (5.3)

and two perpendicular directions

u =
1√
2
(t1− t2) , (5.4)

v =
1√
6
(t1 + t2−2t3) · (5.5)

In order to have a model consistent with an effective theory with positive cosmological constant,
we would like to accommodate the slow-roll inflation and at the same time to ensure a dS vacuum.
However, although a dS minimum exists, the actual allowed region of the parameter space is too
restrictive, see Fig. 5, and additional requirements for slow-roll inflation such as the number of
efoldings are hard to be met. Therefore, in the context of the present construction, the implemen-
tation of the inflationary scenario would not be possible unless a suitable uplifting term is included
in the scalar potential [51].
A possible way out of this impasse is a novel Fayet-Iliopoulos (FI)-term proposed in [52]. This
term is gauge invariant at the Lagrangian level and can be written for a non-R U(1) symmetry [53].
With this in mind, we introduce a constant term Vup associated to a U(1) of a D3-brane, so that the
effective potential takes the form [51]:

Veff = γ
1
2

e−
3
√

6
2 t(
√

6t−8)+d e−
√

6t +Vup , (5.6)

with the modulus t related to the total volume via (5.3) and γ defined in eq. (4.19).
Inflation should occur in an interval t = (tend , t∗) which lies between the maximum and the

minimum of the scalar potential. The first end of the interval is the ending point of inflation, which
corresponds to the breaking of the slow-roll condition:

tend = max

[
t|

1
2

(
V ′
V

)2
'1
, t| |V ′′ |

V '1

]
, (5.7)
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W-1(z)
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de Sitter AdS
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Figure 5: The allowed region for a dS minimum. The vertical line z0 = −0.34 defines the maximum
‘distance’ of the two extrema of the scalar potential VF +VD consistent with a dS vacuum.

where the derivatives V ′,V ′′ are taken with respect to t. The second point is the one corresponding
to the anticipated number of e-foldings N∗ ∼ 50 to 60, where N∗ is given by the formula

N∗ =
∫ t∗

tend

V
V ′

dt · (5.8)

In addition, at the same point t∗(N∗), the spectral index should satisfy the values from observations

ns = 1−6ε +2η = 1−3
(

V ′

V

)2
∣∣∣∣∣
t∗

+2
V ′′

V

∣∣∣∣
t∗

· (5.9)

In Fig. 6, the case for N∗ = 60 efoldings is shown. As required, the region (t∗, tend) where infaltion
takes place is stretched out between the maximum and the minimum of the potential. Because of
the presence of two other scalar fields (5.4, 5.5), multi-field effects should be considered in the
region where the inflaton field is no longer the lightest scalar (see [51] for a detailed analysis7).

6. Conclusions

The quest for the existence of de Sitter string vacua in string theory is a fascinating subject
of intensive recent reseach. Contradictory conjectures with greater or lesser theoretical foundation
regarding their existence abound, and the results are far from being conclusive. Moduli fields which
are always present in Calabi-Yau compactifications, play an instrumental rôle in the determination
of the effective theory’s vacuum.

In this presentation an effective model in a type IIB framework is considered based on a geo-
metric configuration with three intersecting stacks of D7-branes. In this set up, perturbative string
loop contributions induce terms in the Kähler potential which depend logarithmically on the volume

7See also recent work [54] for multi-field infation.
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4.0 4.5 5.0 5.5 6.0 6.5
t

2.×10-8

4.×10-8

6.×10-8

8.×10-8

V

tmaxt*tend

tmf Multi-fields region t

Figure 6: The scalar potential for ns = 0.9605,N∗ = 60. Inflation occurs in the region (t∗, tend) which lies between the
maximum and the minimum of the potential. The region on the right of this line is characterised by AdS minima.

moduli associated with the directions transverse to the corresponding D7-branes. In this frame-
work, the Kähler moduli fields are stabilised and a de Sitter vacuum is accommodated naturally. In
the final part of this presentation, the implications on inflation are discussed.
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