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1. Introduction

The particle discovered at the LHC in 2012 [1, 2] is, within uncertainties, compatible with
predictions for the Higgs boson of the Standard Model (SM) [3]. Therefore the SM can be con-
sidered as a complete theory of the low energy of Particle Physics. However problems such as the
hierarchy, the neutrino masses, the dark matter, the over twenty free parameters of the SM suggest
the existence of a more fundamental theory at higher scales. Furthermore, the hierarchy problem,
the neutrino masses, the dark matter, the over twenty free parameters of the SM ask for a more
fundamental theory.

Therefore, one of the main aims of this fundamental theory is to relate these free parameters,
or, in other words, to reduce the number of these parameters. This reduction is usually based on
the introduction of a larger symmetry, rendering the theory more predictive, such as Grand Unified
Theories (GUTs) [4–10]. One example is the minimal SU(5), where the number of gauge couplings
is reduced to one due to unification. Data from LEP [11] suggested that a N = 1 global Super-
symmetry (SUSY) [9,10] broken in the TeV scale is necessary to be introduced for the unification
to be viable. Relations among the Yukawa couplings are also suggested in GUTs. The SU(5), for
example, predicts the ratio of tau mass to bottom mass Mτ/Mb [12] in the SM. However, GUTs
based on larger gauge groups introduce new degrees of freedom and loose predictivity due to the
different ways of breaking the larger symmetry.

One way to reduce further the couplings of a GUT is to relate its Yukawa and gauge sectors
(Gauge-Yukawa Unification - GYU) [13–15]. Unfortunately the interesting possibility that N = 2
SUSY [16] could play this role is highly limited, since it predicts the existence of light mirror
fermions. Phenomenological problems also appear in composite models and superstring theories.

Another approach is to search for all-loop Renormalization Group Invariant (RGI) relations
among Yukawa and gauge couplings [17, 18], which hold from the unification scale up to the
Planck scale [13–15, 19–24]. With this approach GYU is possible. Remarkably, RGI expressions
that guarantee finiteness to all orders in perturbation theory can be found, too, assuming, among
others, finiteness at one loop in N = 1 gauge theories [25–27].

The above approach needs SUSY as an essential ingredient. Moreover, the SUSY breaking
sector has to be treated in a similar way, since it introduces several new parameters in the theory.
In fact, the RGI relation searches have been extended to the Soft SUSY Breaking (SSB) sector [24,
28–30] relating parameters of mass dimension one and two.

Reduction of couplings in N = 1 SUSY theories has led to very interesting phenomenological
developments [31]. In past works, a “universal” set of soft scalar masses was assumed in the soft
breaking sector, given that: (1) they are part of constraints that preserve two-loop finiteness [32,33];
(2) they are two-loop RGI in more general SUSY gauge theories, subject to the condition known
as P = 1/3Q [28]; and (3) they appear in dilaton-dominated SUSY breaking superstring scenar-
ios [34–36]. However, phenomenological problems occur, all due to the restrictive nature of the
“universality” assumption for the soft scalar masses. For instance: (a) in Finite Unified Theo-
ries (FUTs) universality predicts that the LSP is charged, namely the superpartner of the τ lepton
τ̃; (b) the Minimal Supersymmetric Standard Model (MSSM) with universal soft scalar masses is
incompatible with radiative electroweak symmetry breaking; and worst of all, (c) the universal con-
dition leads to charge and/or color breaking minima deeper than the standard vacuum [37]. There
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have been attempts, consequently, to relax this condition without loosing its attractive features.
First, there is an interesting observation in N = 1 GYU theories: there exists an RGI sum rule for
the soft scalar masses at lower orders; at one loop for the non-finite case [38] and at two loops
for the finite case [39]. The sum rule overcomes the above unpleasant phenomenological conse-
quences. Moreover, the sum rule for the soft scalar masses is RGI to all orders [40] for both the
general and the finite case. Finally, the exact β -functions for soft scalar masses in the Novikov–
Shifman–Vainshtein–Zakharov (NSVZ) scheme [41–43] for the softly broken SUSY QCD have
been obtained [40]. The use of RGI both in the dimensionful and the dimensionless sector together
with the sum rule allows the construction of realistic and predictive N = 1 all-loop finite SU(5)
SUSY models with interesting predictions, as shown in [30, 44–48].

2. Theoretical Basis

In this section we will describe the principle of reduction of couplings. Any RGI relation
among parameters (which does not depend on the renormalization scale µ explicitly) can be ex-
pressed in the implicit form Φ(g1, · · · ,gA) = const., which should satisfy the partial differential
equation (PDE):

µ
dΦ

dµ
= ~∇ ·~β =

A

∑
a=1

βa
∂Φ

∂ga
= 0 , (2.1)

where βa is the β -function of ga. This PDE is equivalent to a set of ordinary differential equations
(ODEs), the so-called reduction equations (REs) [17, 18, 49]

βg
dga

dg
= βa , a = 1, · · · ,A , (2.2)

where g and βg are the primary coupling and its β -function. The counting on a does not include g.
Since maximally (A−1) independent RGI “constraints” can be imposed by the Φas, all parameters
can in principle be expressed in terms of a single parameter g. A closer look at the set of Eq. (2.2),
however, reveals that their general solutions contain as many integration constants as the number of
equations themselves. That means that we have just traded an integration constant for each ordinary
renormalized coupling. Consequently, the general solutions cannot be considered as reduced ones.
The crucial requirement in the search for RGI relations is to demand power series solutions to the
REs,

ga = ∑
n

ρ
(n)
a g2n+1 , (2.3)

These solutions preserve perturbative renormalizability. This ansatz fixes the corresponding in-
tegration constant in each of the REs and picks up a special solution out of each general one.
It is worth noting that the uniqueness of such power series solutions can be decided at one-loop
level [17, 18, 49].

Coupling unification, as described in this section, is very attractive, since the “completely
reduced” theory contains only one independent parameter. However, for some models it can be
unrealistic. Therefore, we often impose fewer RGI constraints. This is the idea of partial reduc-
tion [50, 51].
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3. Finiteness in N = 1 Supersymmetric Gauge Theories

3.1 Finiteness

The superpotential of a chiral, anomaly-free, N = 1 globally supersymmetric gauge theory
based on a group G with gauge coupling constant g is given by

W =
1
2

mi j φi φ j +
1
6

Ci jk φi φ j φk , (3.1)

where mi j and Ci jk are gauge invariant tensors and the matter field φi transforms according to the
irreducible representation Ri of the gauge group G. Then, the renormalization constants associated
with the superpotential (3.1), assuming that supersymmetry is exact, are:

φ
0
i = (Z j

i )
(1/2)

φ j , (3.2)

m0
i j = Zi′ j′

i j mi′ j′ , (3.3)

C0
i jk = Zi′ j′k′

i jk Ci′ j′k′ . (3.4)

By virtue of the N = 1 non-renormalization theorem [54–56] there are no mass and cubic-
interaction-term infinities, therefore:

Zi′ j′k′
i jk Z1/2 i′′

i′ Z1/2 j′′

j′ Z1/2k′′

k′ = δ
i′′
(i δ

j′′
j δ

k′′
k) ,

Zi′ j′
i j Z1/2 i′′

i′ Z1/2 j′′

j′ = δ
i′′
(i δ

j′′

j) .
(3.5)

Thus, the only surviving infinities are the wave-function renormalization constants Z j
i , i.e. one

infinity for each field. The one-loop β -function of the gauge coupling g is given by [57]:

β
(1)
g =

dg
dt

=
g3

16π2 [∑
i

l(Ri)−3C2(G) ] , (3.6)

where l(Ri) is the Dynkin index of Ri and C2(G) is the quadratic Casimir operator of the adjoint
representation of the gauge group G. The β -functions of Ci jk, due to the non-renormalization
theorem, are proportional to the anomalous dimensions γi j of the matter fields φi:

βi jk =
dCi jk

dt
= Ci jl γ

l
k +Cikl γ

l
j +C jkl γ

l
i , (3.7)

where at one-loop γi j is given by [57]:

γ
i(1)
j =

1
32π2 [C

ikl C jkl−2g2C2(R)δ i
j ], (3.8)

where Ci jk =C∗i jk. We may assume that Ci jk are real (so C2
i jk are always positive numbers).

One can see from Equations (3.6) and (3.8) that all the one-loop β -functions of the theory
vanish if β

(1)
g and γ

(1)
i j vanish:

∑
i
`(Ri) = 3C2(G), (3.9)

CiklC jkl = 2δ
i
jg

2C2(Ri). (3.10)
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The conditions for finiteness for N = 1 theories with SU(N) gauge structure are discussed
in [58] and the analysis for the anomaly-free and no-charge renormalization requirements for these
theories is found in [59]. An interesting result is that conditions (3.9) and (3.10) are also necessary
and sufficient for finiteness at the two-loop level [57, 60–63].

In the case that supersymmetry is broken by the inclusion of soft terms, the requirement of
finiteness in the one-loop soft breaking terms imposes further constraints [32]. In addition, the
set of conditions that are sufficient for one-loop finiteness of the soft terms renders the soft sector
two-loop finite as well [33].

The one-loop and two-loop finiteness conditions (3.9) and (3.10) restrict considerably the pos-
sible choices of the irreducible representations (irreps) Ri for a group G, as well as Yukawa cou-
plings in the superpotential (3.1). Note that these finiteness conditions cannot be applied to the
Minimal Supersymmetric Standard Model (MSSM), since the U(1) gauge group is incompatible
with condition (3.9) due to C2[U(1)] = 0. This leads to the expectation that finiteness will be
attained at GUT level only, the MSSM being just the corresponding low-energy effective theory.

Another important consequence of one- and two-loop finiteness is that supersymmetry can
only be broken softly. Indeed, gauge singlets are unacceptable, F-type spontaneous symmetry
breaking terms [64] are incompatible with finiteness, as well as D-type [65] spontaneous breaking,
as it requires a U(1) gauge group.

A natural question to ask is what happens at higher orders. The answer can be found in a theo-
rem [26,66] that states the necessary and sufficient conditions to achieve all-loop finiteness. Before
we discuss the theorem, some introductory remarks are in order. The finiteness conditions im-
pose relations between gauge and Yukawa couplings. However, it is trivial to require such relations
that render the couplings mutually dependent at a given renormalization point. What is non-trivial
is to guarantee that relations leading to reduction of couplings hold at any renormalization point.
As we already know, the necessary and sufficient condition for this to happen is to require that such
relations are solutions to the REs

βg
dCi jk

dg
= βi jk (3.11)

and hold at all orders. It is remarkable that the existence of all-loop power series solutions to (3.11)
can be decided at one-loop level, as it was already mentioned.

Let us now turn to the all-order finiteness theorem [26, 66], which states the conditions under
which an N = 1 SUSY gauge theory can become finite to all orders in the sense of vanishing β -
functions, that is of physical scale invariance. It is based on (a) the structure of the supercurrent in
N = 1 SUSY gauge theory [67–69] and on (b) the non-renormalization properties of N = 1 chiral
anomalies [25, 26, 66, 70, 71]. Details on the proof can be found in [26, 66] and further discussion
in Refs. [25, 27, 70–72].

Theorem: Consider an N = 1 SUSY Yang–Mills theory, with the simple gauge group. If the
following conditions are satisfied:

1. There is no gauge anomaly.
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2. The gauge β -function vanishes at one loop:

β
(1)
g = 0 = ∑

i
l(Ri)−3C2(G). (3.12)

3. There exist solutions of the form:

Ci jk = ρi jkg, ρi jk ∈ IC (3.13)

to the conditions of vanishing one-loop matter fields’ anomalous dimensions:

γ
i (1)
j = 0

=
1

32π2 [ Cikl C jkl−2 g2 C2(R)δ i
j].

(3.14)

4. These solutions are isolated and non-degenerate when considered as solutions of vanishing
one-loop Yukawa β -functions:

βi jk = 0. (3.15)

Then, each of the solutions (3.13) can be uniquely extended to a formal power series in g, and the
associated super Yang–Mills models depend on the single coupling constant g with a β function,
which vanishes at all orders.

It is important to note that the requirement of isolated and non-degenerate solutions guarantees
the existence of a unique formal power series solution to the reduction equations. Thus, we see that
finiteness and reduction of couplings are intimately related. Also, we should note that one cannot
extend the validity of a similar theorem in non-SUSY theories.

3.2 Partial Reduction

For our purposes, it is convenient to work with the square of the couplings and to arrange Ci jk

in such a way that they are covered by a single index i (i = 1, · · · ,n):

α =
g2

4π
, αi =

g2
i

4π
. (3.16)

The evolution equations of α’s in perturbation theory then take the form

dα

dt
= β = −β

(1)
α

2 + · · · ,

dαi

dt
= βi = −β

(1)
i αi α +∑

j,k
β
(1)
i, jk α j αk + · · · ,

(3.17)

where · · · denotes the contributions from higher orders, and β
(1)
i, jk = β

(1)
i,k j.

Given the set of the evolution equations (3.17), we investigate the asymptotic properties, as
follows. First we define [17, 49, 73–75]

α̃i ≡
αi

α
, i = 1, · · · ,n , (3.18)

5
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and derive from Eq. (3.17)

α
dα̃i

dα
=−α̃i +

βi

β
=

(
−1+

β
(1)
i

β (1)

)
α̃i

−∑
j,k

β
(1)
i, jk

β (1) α̃ j α̃k + ∑
r=2

(
α

π

)r−1
β̃
(r)
i (α̃) ,

(3.19)

where β̃
(r)
i (α̃) (r = 2, · · ·) are power series of α̃’s and can be computed from the r-th loop β -

functions. Next we search for fixed points ρi of Eq. (3.18) at α = 0. To this end, we have to
solve (

−1+
β
(1)
i

β (1)

)
ρi−∑

j,k

β
(1)
i, jk

β (1) ρ j ρk = 0 , (3.20)

and assume that the fixed points have the form

ρi = 0 for i = 1, · · · ,n′ ; ρi > 0 for i = n′+1, · · · ,n . (3.21)

We then regard α̃i with i ≤ n′ as small perturbations to the undisturbed system which is defined
by setting α̃i with i ≤ n′ equal to zero. As we have seen, it is possible to verify at the one-loop
level [17, 18, 49, 73] the existence of the unique power series solution

α̃i = ρi + ∑
r=2

ρ
(r)
i α

r−1 , i = n′+1, · · · ,n (3.22)

of the reduction equations (3.19) to all orders in the undisturbed system. These are RGI relations
among couplings and keep formally perturbative renormalizability of the undisturbed system. So
in the undisturbed system there is only one independent coupling, the primary coupling α .

The small perturbations caused by nonvanishing α̃i with i ≤ n′ enter in such a way that the
reduced couplings, i.e. α̃i with i > n′, become functions not only of α but also of α̃i with i ≤ n′.
It turned out that, to investigate such partially reduced systems, it is most convenient to work with
the partial differential equations{

β̃
∂

∂α
+

n′

∑
a=1

β̃a
∂

∂ α̃a

}
α̃i(α, α̃) = β̃i(α, α̃) ,

β̃i(a) =
βi(a)

α2 −
β

α2 α̃i(a), β̃ ≡ β

α
,

(3.23)

which are equivalent to the reduction equations (3.19), where we let a,b run from 1 to n′ and i, j
from n′+1 to n in order to avoid confusion. We then look for solutions of the form

α̃i = ρi + ∑
r=2

(
α

π

)r−1
f (r)i (α̃a) , i = n′+1, · · · ,n , (3.24)

where f (r)i (α̃a) are supposed to be power series of α̃a. This particular type of solution can be mo-
tivated by requiring that in the limit of vanishing perturbations we obtain the undisturbed solutions
(3.22) [51, 76]. Again, it is possible to obtain the sufficient conditions for the uniqueness of f (r)i in
terms of the lowest order coefficients.

6
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4. The SSB Sector of Reduced N = 1 SUSY and Finite Theories

The method of reducing the dimensionless couplings has been extended [24] to the soft super-
symmetry breaking (SSB) dimensionful parameters of N = 1 SUSY theories. In addition, it was
found [38] that SSB scalar masses in GYU models satisfy an RGI sum rule.

Consider the superpotential given by (3.1) along with the Lagrangian for SSB terms:

−LSSB =
1
6

hi jk
φiφ jφk +

1
2

bi j
φiφ j

+
1
2
(m2) j

i φ
∗ i

φ j +
1
2

M λλ +h.c.,

where φi are the scalar parts of chiral superfields Φi, λ are the gauginos and M their unified mass.

We assume that the REs admit power series solutions:

Ci jk = g ∑
n

ρ
i jk
(n)g

2n . (4.1)

In the case of finite theories, we further assume that the gauge group is a simple group and
the one-loop gauge β -function vanishes. According to the finiteness theorem Refs. [26, 66] and
the assumption given in (4.1), the theory is then all-order finite, if, among others, the one-loop
anomalous dimensions γ

j(1)
i vanish. The one-loop and two-loop finiteness for hi jk can be achieved

by [33]:

hi jk =−MCi jk + · · ·=−Mρ
i jk
(0) g+O(g5) , (4.2)

where . . . stand for higher order terms.

In order to obtain the two-loop sum rule for soft scalar masses, we will assume that the lowest
order coefficients ρ

i jk
(0) and also (m2)i

j satisfy the diagonality relations:

ρipq(0)ρ
jpq
(0) ∝ δ

j
i for all p and q and (m2)i

j = m2
jδ

i
j . (4.3)

Then the following soft scalar-mass sum rule is found [15, 39, 81]:

( m2
i +m2

j +m2
k )/MM† = 1+

g2

16π2 ∆
(2)+O(g4) (4.4)

for i, j, k with ρ
i jk
(0) 6= 0. ∆(2) is the two-loop correction

∆
(2) =−2∑

l
[(m2

l /MM†)− (1/3)] T (Rl), (4.5)

which vanishes for the universal choice in accordance with the previous findings of Ref. [33].
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Using the spurion technique [56, 82–85], one can find the following all-loop relations among
β -functions [86–91]:

βM = 2O

(
βg

g

)
, (4.6)

β
i jk
h = γ

i
lhl jk + γ

j
lhilk + γ

k
lhi jl

−2γ
i
1lCl jk−2γ

j
1 lCilk−2γ

k
1 lCi jl , (4.7)

(βm2)i
j =

[
∆+X

∂

∂g

]
γ

i
j , (4.8)

O =

(
Mg2 ∂

∂g2 −hlmn ∂

∂Clmn

)
, (4.9)

∆ = 2OO∗+2|M|2g2 ∂

∂g2 +C̃lmn
∂

∂Clmn
+C̃lmn ∂

∂Clmn , (4.10)

where (γ1)
i
j = Oγ i

j, Clmn = (Clmn)∗, and:

C̃i jk = (m2)i
lCl jk +(m2) j

lCilk +(m2)k
lCi jl . (4.11)

The key point in the strategy of refs. [40,90,91] is the assumption that the differential operators
O and ∆ given in eqs. (4.9) and (4.10) become total derivative operators on certain RG invariant
surfaces. Therefore the the beta functions of the exact theory are directly related to those of the
soft supersymmetry breaking terms. Maybe the most interesting result appears in the case of finite
theories in which the property of vanishing beta-functions of the exact theory is transferred to the
beta functions of the softly broken sector and therefore the whole theory becomes finite.

In particular, and using the all-loop gauge β -function of Novikov et al. [41–43] given by:

β
NSVZ
g =

g3

16π2

[
∑l T (Rl)(1− γl/2)−3C(G)

1−g2C(G)/8π2

]
, (4.12)

the all-loop RGI sum rule [40] has been found:

m2
i +m2

j +m2
k = |M|2{

1
1−g2C(G)/(8π2)

d lnCi jk

d lng
+

1
2

d2 lnCi jk

d(lng)2 }

+∑
l

m2
l T (Rl)

C(G)−8π2/g2
d lnCi jk

d lng
.

(4.13)

Also, the exact β -function for m2 in the NSVZ scheme has been obtained [40] for the first
time:

β
NSVZ
m2

i
=

[
|M|2{ 1

1−g2C(G)/(8π2)

d
d lng

+
1
2

d2

d(lng)2 }

+∑
l

m2
l T (Rl)

C(G)−8π2/g2
d

d lng

]
γ

NSVZ
i .

(4.14)

Surprisingly, the all-loop result (4.13) coincides with the superstring result for the finite case
in a certain class of orbifold models [39] if d lnCi jk/d lng = 1.
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Finally, it is important to emphasize that the sum rule holds always, to the extend that there
is reduction of couplings. A consequence from the reduction of dimensionful parameters is that in
some cases it is possible to have exact relations among the soft scalar masses and a mass-dimension
one parameter (which could be the gaugino unified mass). This option is not phenomenologically
viable for the case of Finite Unified Theories, though.

5. Reduction of Couplings in Phenomenologically Viable Models

5.1 A Successful Finite Unified Theory

In this section we will review an all-loop FUT with SU(5) as the gauge group, where the
reduction of couplings has been applied to the third fermionic generation [19]. This model was
selected on the basis of agreement with known experimental data at the time [45]. It predicted the
light Higgs boson mass to be in the range 121–126 GeV four and a half years before the discovery.
The particle content of the model we will study, which we denote SU(5)-FUT, consists of three
(5+10) supermultiplets needed for each of the three generations of quarks and leptons, four (5+5)
and one 24 considered as Higgs supermultiplets. When the gauge group of the FUT is broken, the
theory is no longer finite and we are left with the MSSM [14, 19–23].

A predictive GYU all-loop finite SU(5) model, in addition to the above-mentioned require-
ments, should have the following properties:

1. One-loop anomalous dimensions are diagonal: γ
(1) j
i ∝ δ

j
i .

2. Three fermion generations in the irreducible representations 5i,10i (i = 1,2,3), which obvi-
ously should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs 5+ 5,
which couple to the third fermionic generation.

After the method of reduction of couplings is applied, the symmetry is enhanced, leading to
the superpotential [39, 95]:

W =
3

∑
i=1

[
1
2

gu
i 10i10iHi +gd

i 10i5i H i ]+gu
23 102103H4 (5.1)

+gd
23 10253 H4 +gd

32 10352 H4 +g f
2 H2 24H2 +g f

3 H3 24H3 +
gλ

3
(24)3 .

The non-degenerate and isolated solutions to γ
(1)
i = 0 give:

(gu
1)

2 =
8
5

g2 , (gd
1)

2 =
6
5

g2 , (gu
2)

2 = (gu
3)

2 =
4
5

g2 , (5.2)

(gd
2)

2 = (gd
3)

2 =
3
5

g2 , (gu
23)

2 =
4
5

g2 , (gd
23)

2 = (gd
32)

2 =
3
5

g2 ,

(gλ )2 =
15
7

g2 , (g f
2)

2 = (g f
3)

2 =
1
2

g2 , (g f
1)

2 = 0 , (g f
4)

2 = 0 ,

and from the sum rule we obtain:

m2
Hu

+2m2
10 = M2 , m2

Hd
−2m2

10 =−
M2

3
, m2

5 +3m2
10 =

4M2

3
. (5.3)
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One can observe that we have only two free parameters (m10 and M) for the dimensionful sector.
As it was mentioned already, after the SU(5) gauge symmetry breaking we assume we have the

MSSM, i.e. only two Higgs doublets. This can be done by introducing appropriate mass terms that
allow for a rotation of the Higgs sector [19, 23, 96–98] in such a way, that only one pair of Higgs
doublets, coupled mostly to the third generation, remains light and acquires vevs. To avoid fast
proton decay the usual fine tuning to achieve doublet-triplet splitting is performed, although the
mechanism is not identical to the one of the minimal SU(5), since we now have an extended Higgs
sector.

Thus, after the GUT gauge symmetry is broken, we are left with the MSSM with the boundary
conditions for the third family given by the finiteness conditions. The other two families are not
restricted.

5.2 Finite SU(N)3 Unification

We continue examining the possibility of constructing realistic FUTs based on product gauge
groups [99]. Consider an N = 1 supersymmetric theory, with gauge group SU(N)1× SU(N)2×
·· ·×SU(N)k, with n f copies (number of families) of the supersymmetric multiplets (N,N∗,1, . . . ,1)+
(1,N,N∗, . . . ,1)+· · ·+(N∗,1,1, . . . ,N). The one-loop β -function coefficient in the renormalization-
group equation of each SU(N) gauge coupling is simply given by

b =

(
−11

3
+

2
3

)
N +n f

(
2
3
+

1
3

)(
1
2

)
2N =−3N +n f N . (5.4)

This means that n f = 3 is the only solution of Eq.(5.4) that yields b = 0. Since b = 0 is a necessary
condition for a finite field theory, the existence of three families of quarks and leptons is natural in
such models, provided the matter content is exactly as given above.

The model of this type with best phenomenology is the SU(3)3 model discussed in Ref. [99],
where the details of the model are given. It corresponds to the well-known example of SU(3)C×
SU(3)L×SU(3)R [100–103], with quarks transforming as

q =

d u h
d u h
d u h

∼ (3,3∗,1), qc =

dc dc dc

uc uc uc

hc hc hc

∼ (3∗,1,3), (5.5)

and leptons transforming as

λ =

N Ec ν

E Nc e
νc ec S

∼ (1,3,3∗). (5.6)

Switching the first and third rows of qc together with the first and third columns of λ , we obtain the
alternative left-right model first proposed in Ref. [103] in the context of superstring-inspired E6.

In order for all the gauge couplings to be equal at an energy scale, MGUT, the cyclic symmetry
Z3 must be imposed, i.e.

q→ λ → qc→ q, (5.7)

where q and qc are given in eq. (5.5) and λ in eq. (5.6). Then, the first of the finiteness conditions
(3.9) for one-loop finiteness, namely the vanishing of the gauge β -function is satisfied.

10
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Next let us consider the second condition, i.e. the vanishing of the anomalous dimensions of
all superfields, eq. (3.10). To do that first we have to write down the superpotential. If there is
just one family, then there are only two trilinear invariants, which can be constructed respecting the
symmetries of the theory, and therefore can be used in the superpotential as follows

f Tr(λqcq)+
1
6

f ′ εi jkεabc(λiaλ jbλkc +qc
iaqc

jbqc
kc +qiaq jbqkc), (5.8)

where f and f ′ are the Yukawa couplings associated to each invariant. Quark and leptons obtain
masses when the scalar parts of the superfields (Ñ, Ñc) obtain vacuum expectation values (vevs),

md = f 〈Ñ〉, mu = f 〈Ñc〉, me = f ′〈Ñ〉, mν = f ′〈Ñc〉. (5.9)

With three families, the most general superpotential contains 11 f couplings, and 10 f ′ cou-
plings, subject to 9 conditions, due to the vanishing of the anomalous dimensions of each superfield.
The conditions are the following

∑
j,k

fi jk( fl jk)
∗+

2
3 ∑

j,k
f ′i jk( f ′l jk)

∗ =
16
9

g2
δil , (5.10)

where

fi jk = f jki = fki j, (5.11)

f ′i jk = f ′jki = f ′ki j = f ′ik j = f ′k ji = f ′jik. (5.12)

Quarks and leptons receive masses when the scalar part of the superfields Ñ1,2,3 and Ñc
1,2,3 obtain

vevs as follows

(Md)i j = ∑
k

fki j〈Ñk〉, (Mu)i j = ∑
k

fki j〈Ñc
k 〉, (5.13)

(Me)i j = ∑
k

f ′ki j〈Ñk〉, (Mν)i j = ∑
k

f ′ki j〈Ñc
k 〉. (5.14)

We will assume that the below MGUT we have the usual MSSM 1, with the two Higgs doublets
coupled maximally to the third generation. Therefore we have to choose the linear combinations
Ñc = ∑i aiÑc

i and Ñ = ∑i biÑi to play the role of the two Higgs doublets, which will be responsible
for the electroweak symmetry breaking. This can be done by choosing appropriately the masses in
the superpotential [98], since they are not constrained by the finiteness conditions. We choose that
the two Higgs doublets are predominately coupled to the third generation. Then these two Higgs
doublets couple to the three families differently, thus providing the freedom to understand their
different masses and mixings. The remnants of the SU(3)3 FUT are the boundary conditions on
the gauge and Yukawa couplings, i.e. Eq.(5.10), the h = −MC relation, and the soft scalar-mass
sum rule eq. (4.4) at MGUT, which, when applied to the present model, takes the form

m2
Hu

+m2
t̃c +m2

q̃ = M2 = m2
Hd

+m2
b̃c +m2

q̃ , (5.15)

1For details of how the spontaneous breaking of SU(3)3 to MSSM can be achieved see refs [104, 105] and refs
therein.
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where t̃c, b̃c, and q̃ are the scalar parts of the corresponding superfields.
Concerning the solution to Eq.(5.10) we consider two versions of the model:

I) An all-loop finite model with a unique and isolated solution, in which f ′ vanishes, which leads
to the following relations

f 2 = f 2
111 = f 2

222 = f 2
333 =

16
9

g2 . (5.16)

As for the lepton masses, since all f ′ couplings have been fixed to be zero at this order, in principle
they would be expected to appear radiatively induced by the scalar lepton masses appearing in the
SSB sector of the theory. However, due to the finiteness conditions they cannot appear radiatively
and remain as a problem for further study.
II) A two-loop finite solution, in which we keep f ′ non-vanishing and we use it to introduce the
lepton masses. The model in turn becomes finite only up to two-loops since the corresponding
solution of Eq.(5.10) is not an isolated one any more, i.e. it is a parametric one. In this case we
have the following boundary conditions for the Yukawa couplings

f 2 = r
(

16
9

)
g2 , f ′2 = (1− r)

(
8
3

)
g2 , (5.17)

where r is a free parameter which parametrizes the different solutions to the finiteness conditions.
As for the boundary conditions of the soft scalars, we have the universal case.

5.3 Reduction of Couplings in the MSSM

In this section we are working in the framework of MSSM, assuming though the existence of
a covering GUT.

The analysis of the partial reduction of couplings in this framework was first done in refs [30,
170].

The superpotential of the MSSM (where again we restrict ourselves to the third generation of
fermions) is defined by

W = YtH2Qtc +YbH1Qbc +YτH1Lτ
c +µH1H2 , (5.18)

where Q,L, t,b,τ,H1,H2 are the usual superfields of MSSM, while the SSB Lagrangian is given by

−LSSB = ∑
φ

m2
φ φ̂ ∗φ̂ +

[
m2

3Ĥ1Ĥ2 +
3

∑
i=1

1
2

Miλiλi +h.c

]
+
[
htĤ2Q̂t̂c +hbĤ1Q̂b̂c +hτĤ1L̂τ̂c +h.c.

]
,

(5.19)

where φ̂ represents the scalar component of all superfields, λ refers to the gaugino fields while all
hatted fields refer to the scalar components of the corresponding superfield. The Yukawa Yt,b,τ and
the trilinear ht,b,τ couplings refer to the third generator only, neglecting the first two generations.

Let us start with the dimensionless couplings, i.e. gauge and Yukawa. As a first step we
consider only the strong coupling and the top and bottom Yukawa couplings, while the other two
gauge couplings and the tau Yukawa will be treated as corrections. Following the above line, we
reduce the Yukawa couplings in favour of the strong coupling α3

Y 2
i

4π
≡ αi = G2

i α3, i = t,b,

12
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and using the RGE for the Yukawa, we get

G2
i =

1
3
, i = t,b.

This system of the top and bottom Yukawa couplings reduced with the strong one is dictated by
(i) the different running behaviour of the SU(2) and U(1) coupling compared to the strong one
[50] and (ii) the incompatibility of applying the above reduction for the tau Yukawa since the
corresponding G2 turns negative [107]. Adding now the two other gauge couplings and the tau
Yukawa in the RGE as corrections, we obtain

G2
t =

1
3
+

71
525

ρ1 +
3
7

ρ2 +
1
35

ρτ , G2
b =

1
3
+

29
525

ρ1 +
3
7

ρ2−
6
35

ρτ (5.20)

where

ρ1,2 =
g2

1,2

g2
3

=
α1,2

α3
, ρτ =

g2
τ

g2
3
=

Y 2
τ

4π

α3
(5.21)

Note that the corrections in Eq.(5.20) are taken at the GUT scale and under the assumption
that

d
dg3

(
Y 2

t,b

g2
3

)
= 0.

Let us comment on our assumption above, which led to the Eq.(5.20). In practice we assume
that even including the corrections from the rest of the gauge as well as the tau Yukawa couplings,
at the GUT scale the ratio of the top and bottom couplings αt,b over the strong coupling are still
constant, i.e. their scale dependence is negligible. Or, rephrasing it, our assumption can be un-
derstood as a requirement that in the ultraviolet (close to the GUT scale) the ratios of the top and
bottom Yukawa couplings over the strong coupling become least sensitive against the change of
the renormalization scale. This requirement sets the boundary condition at the GUT scale, given
in Eq.(5.20). Alternatively one could follow the systematic method to include the corrections to a
non-trivially reduced system developed in ref. [51], but considering two reduced systems: the first
one consisting of the “top, bottom” couplings and the second of the “strong, bottom” ones.

In the next order the corrections are assumed to be in the form

αi = G2
i α3 + J2

i α
2
3 , i = t,b.

Then, the coefficients Ji are given by

J2
i =

1
4π

17
24

, i = t,b

for the case where only the strong gauge and the top and bottom Yukawa couplings are active, while
for the case where the other two gauge and the tau Yukawa couplings are added as corrections we
obtain

J2
t =

1
4π

Nt

D
, J2

b =
1

4π

Nb

5D
,

where D, Nt and Nb are known quantities.
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We move now to the dimension-1 parameters of the SSB Lagrangian, namely the trilinear
couplings ht,b,τ of the SSB Lagrangian, Eq. (5.19). Again, following the pattern in the Yukawa
reduction, in the first stage we reduce ht,b, while hτ will be treated as a correction.

hi = ciYiM3 = ciGiM3g3, i = t,b,

where M3 is the gluino mass. Using the RGE for the two h we get

ct = cb =−1,

where we have also used the 1-loop relation between the gaugino mass and the gauge coupling
RGE

2Mi
dgi

dt
= gi

dMi

dt
, i = 1,2,3.

Adding the other two gauge couplings as well as the tau Yukawa hτ as correction we get

ct =−
AAAbb +AtbBB

AbtAtb−AbbAtt
, cb =−

AAAbt +AttBB

AbtAtb−AbbAtt
,

Again, Att , Abb and Atb are known quantities.
Finally we consider the soft squared masses m2

φ
of the SSB Lagrangian. Their reduction takes

the form
m2

i = ciM2
3 , i = Q,u,d,Hu,Hd . (5.22)

For our completely reduced system (in 1-loop), i.e. g3,Yt ,Yb,ht ,hb, the coefficients of the soft
masses become

cQ = cu = cd =
2
3
, cHu = cHd =−1/3,

obeying the celebrated sum rules

m2
Q +m2

u +m2
Hu

M2
3

= cQ + cu + cHu = 1,
m2

Q +m2
d +m2

Hd

M2
3

= cQ + cd + cHd = 1.

The selection of free parameters in this model, which tightly connected to the prediction of the
fermion masses, will be discussed in Sect. 9.1. Subsequently, the corresponding phenomenological
implications of the quark mass predictions are analyzed in 9.2.

6. Phenomenological Constraints

Here we outline the various constraints that are taken into account in our phenomenological
analysis. We first consider four types of flavour constraints, in which SUSY is known to have sig-
nificant impact2. Specifically, we consider the flavour observables BR(b→ sγ), BR(Bs→ µ+µ−),
BR(Bu → τν) and ∆MBs . It should be noted that for this review we have not used the latest ex-
perimental and theoretical values. However, this has a minor impact on the presented results. The
uncertainties below are the linear combination of the experimental error and twice the theoretical
uncertainty in the MSSM. The constraints are:

2Over the past years several “flavor anomalies” appeared. The most significant ones are given by the measurements
of R(K(∗) = BR(B→ K(∗)µ+µ−)/BR(B→ K(∗)e+e−)) and R(D(∗) = BR(B→D(∗)τν)/BR(B→D(∗)µν)) as well as
the measurement of P′5 capturing the momentum dependance of the B→ K∗µ+µ− decay [108]. While (a combination
of) these anomalies may turn out to be significant (see, e.g., Ref. [109]), our models do not provide any solution to them.
Consequently, they do not present an additional constraint on our preferred parameter space.
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• For the branching ratio BR(b→ sγ) we take a value from the Heavy Flavor Averaging Group
(HFAG) [110, 111]:

BR(b→ sγ)exp

BR(b→ sγ)SM = 1.089±0.27 . (6.1)

• For the branching ratio BR(Bs→ µ+µ−) we use a combination of CMS and LHCb data [112,
113, 115–117]:

BR(Bs→ µ
+

µ
−) = (2.9±1.4)×10−9 . (6.2)

• For the Bu decay to τν we use the limit [111, 118, 119]:

BR(Bu→ τν)exp

BR(Bu→ τν)SM = 1.39±0.69 . (6.3)

• For ∆MBs we use [120, 121]:
∆Mexp

Bs

∆MSM
Bs

= 0.97±0.2 . (6.4)

Since the quartic couplings in the Higgs potential are given by the SM gauge couplings,
the lightest Higgs boson mass is not a free parameter, but rather predicted in terms of other pa-
rameters. Higher-order corrections are crucial for a precise prediction of Mh; see Refs. [125–127]
for reviews.

The discovery of a Higgs-like particle at ATLAS and CMS in July 2012 [1,2] can be interpreted
as the discovery of the light C P-even Higgs boson of the MSSM Higgs spectrum [128–130]. The
experimental average for the (SM) Higgs boson mass obtained at the LHC Run I is given by [131]

Mexp
H = 125.1±0.3 GeV . (6.5)

More recent Run II measurements confirm this measurement. The uncertainty, however is dom-
inated by the theoretical accuracy for the prediction of Mh in the MSSM, which was estimated
to be at the level of 3 GeV [132–134]. It should be noted that this estimate is only valid if the
most accurate prediction of Mh is employed. For the following phenomenological analyses the
code FeynHiggs [132, 134, 135] (Version 2.14.0 beta) was used to predict the light Higgs mass.
The evaluation of the Higgs masses with FeynHiggs is based on the combination of a fixed order
diagrammatic calculation and a resummation of the (sub)leading logarithmic contributions at all
orders of perturbation theory. This combination ensures a reliable evaluation of Mh also for large
SUSY scales. Refinements in the combination of the fixed order log resummed calculation have
been included w.r.t. previous versions [134]. They resulted in a more precise Mh evaluation for high
supersymmetric mass scales and also in a downward shift of Mh at the level of O(2 GeV) for large
SUSY masses. For our analyses we used two estimates for the theory uncertainty of 3(2) GeV.
The a total uncertainty for Mh, combined of the experimental and the theoretical uncertainty, is
then given by

Mh = 125.1±3.1 (2.1) GeV . (6.6)

We finally briefly comment on possible Cold Dark Matter (CDM) constraints. Since it is
well known that the lightest neutralino, being the Lightest SUSY Particle (LSP), is an excellent
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candidate for CDM [122], one can in principle demand that the lightest neutralino is indeed the
LSP and parameters leading to a different LSP could be discarded. The current bound, favoured
by a joint analysis of WMAP/Planck and other astrophysical and cosmological data, is at 2σ level
given by [123, 124]

ΩCDMh2 = 0.1120±0.0112 . (6.7)

However, in the analyzed parameter space the relic abundance turns out to be too high in compar-
ison with Eq. (6.7). Consequently, on a more general basis a mechanism is needed in our models
to reduce the CDM abundance in the early universe. This issue could, for instance, be related to
another problem, that of neutrino masses. Within the FUTs this type of masses cannot be gener-
ated naturally, although a non-zero value for neutrino masses has clearly been established [108].
However, the FUTs discussed here can, in principle, be easily extended by introducing bilinear
R-parity violating terms that preserve finiteness and introduce the desired neutrino masses [145].
More generally, R-parity violation [148] would have a small impact on the collider phenomenol-
ogy presented here (apart from fact the SUSY search strategies could not rely on a ‘missing energy’
signature), but remove the CDM bound of Eq. (6.7) completely. Consequently, Eq. (6.7) was not
taken into account in the analyses presented below.

7. Numerical Analysis of the FUT

7.1 FUT Predictions for Future Colliders

Since the gauge symmetry is broken below MGUT, the finiteness conditions do not restrict the
renormalization properties at low energies. Thus, all that remains are boundary conditions on the
gauge and Yukawa couplings (5.2), the h =−MC (4.2) relation and the soft scalar-mass sum rules
at MGUT.

In Figure 1 we show the SU(5)-FUT predictions for mt and mb(MZ) as a function of the unified
gaugino mass M for the cases µ < 0 and µ > 0. We use the experimental value of the top quark
pole mass as in [119].

mexp
t = (173.2±0.9) GeV . (7.1)

Figure 1: The bottom quark mass at the Z boson scale (left) and top quark pole mass (right) as a function
of M for both signs of µ .

We did not include the latest LHC/Tevatron data leading to mexp
t = (173.34±0.76) GeV [136],

which would have a negligible impact on our analysis.
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The bottom mass is calculated at MZ , in order to avoid uncertainties that come from running
down to the pole mass. The leading supersymmetric radiative corrections to the bottom and tau
masses have been taken into account [137]. For the bottom mass we use at MZ [119]:

mb(MZ) = (2.83±0.10) GeV. (7.2)

The experimental bounds on the mb(MZ) and the mt mass clearly single out µ < 0 as the only
solution compatible with these constraints.

Figure 2: The lightest Higgs boson mass, Mh, as a function of M for the choice µ < 0. The green points are
the ones that satisfy the B-physics constraints.

The prediction for Mh of SU(5)-FUT with µ < 0 is shown in Figure 2 in a range for the unified
gaugino mass 0.5 TeV . M . 9 TeV. The green points satisfy the B-physics constraints as well.
We should note here that these predictions are subject to a theory uncertainty of 3 (2) GeV [132].
Older analyses, including in particular less refined evaluations of the light Higgs mass, are given in
Refs. [46, 138, 139].

The allowed values of the lightest Higgs boson mass limit the allowed supersymmetric masses’
values, as it can be seen in Figure 3. In the left (right) plot we impose Mh = 125.1±3.1 (2.1) GeV.
In particular, very heavy coloured SUSY particles are favoured (nearly independent of the Mh

uncertainty), in agreement with the non-observation of those particles at the LHC [140]. Overall,
the allowed coloured supersymmetric masses will remain unobservable at the (HL-)LHC, the ILC
or CLIC. The lower part of the electroweak spectrum could be accessible at CLIC with

√
s = 3 TeV

The coloured spectrum would be accessible, however, at the FCC-hh [141], as could the full heavy
Higgs spectrum.

In Table 1 two example spectra of SU(5)-FUT (with µ < 0) are shown, which span the mass
range of the parameter space that is in agreement with the B-physics observables and the lightest
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Higgs boson mass measurement. We show the lightest and the heaviest spectrum (based on m
χ̃0

1
)

for δMh = 2.1 and δMh = 3.1. The Higgs boson masses are denoted as Mh, MH , MA and MH± .
mt̃1,2 , mt̃1,2 , mg̃ and mτ̃1,2 , are the scalar top, bottom, gluino and tau masses, respectively. m

χ̃
±
1,2

and
m

χ̃0
1,2,3,4

stand for chargino and neutralino masses, respectively.

Figure 3: The (left,right) plots show the spectrum of the SU(5)-FUT (with µ < 0) model after imposing
the constraint Mh = 125.1± 3.1(2.1) GeV. The light (green) points are the various Higgs boson masses;
the dark (blue) points following are the two scalar top and bottom masses; the gray ones are the gluino
masses; then come the scalar tau masses in orange (light gray); the darker (red) points to the right are the
two chargino masses; followed by the lighter shaded (pink) points indicating the neutralino masses.

No point of SU(5)-FUT (with µ < 0) fulfills the bound of Eq. (6.7) (we have used the code
MicroMegas [142–144]). Consequently, a mechanism is needed in our model to reduce the CDM
abundance in the early universe. This issue could be related to the problem of neutrino masses.
These mass cannot be generated naturally within the FUT we are examining, although a non-
zero value for neutrino masses has clearly been established [119]. However, SU(5)-FUT (with
µ < 0) can be, in principle, extended by introducing bilinear R-parity violating terms (that pre-
serve finiteness) and introduce neutrino masses [145–147]. R-parity violation [148] would have
a small impact on the above collider phenomenology (apart from the fact that sypersymmmetry
search strategies could not rely on a ‘missing energy’ signature), but remove the CDM bound of
Eq. (6.7) completely. Other mechanisms, not involving R-parity violation and keeping the ‘missing
energy’ signature, that could be invoked if the amount of CDM appears to be too large, concern
the cosmology of the early universe. For example, “thermal inflation” [153] or “late time entropy
injection” [154] can bring the CDM density into agreement with WMAP measurements.

7.2 FUT Conclusions

One can see that the predictions of FUT are impressive. But one could also add some com-
ments on the theoretical side. The developments on treating the problem of divergencies include
string and non-commutative theories, as well as N = 4 supersymmetric theories [155, 156], N = 8
supergravity [157–161] and the AdS/CFT correspondence [162]. It is interesting that the N = 1
FUT discussed here includes ideas that have survived phenomenological and theoretical tests, as
well as the ultraviolet divergence problem and solves it in a minimal way.
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δMh = 2.1 Mh MH MA MH± mt̃1 mt̃2 mb̃1
mb̃2

mg̃

lightest 123.1 1533 1528 1527 2800 3161 2745 3219 4077

heaviest 127.2 4765 4737 4726 10328 11569 10243 11808 15268

mτ̃1 mτ̃2 m
χ̃
±
1

m
χ̃
±
2

m
χ̃0

1
m

χ̃0
2

m
χ̃0

3
m

χ̃0
4

tanβ

lightest 983 1163 1650 2414 900 1650 2410 2414 45

heaviest 4070 5141 6927 8237 3920 6927 8235 8237 46

δMh = 3.1 Mh MH MA MH± mt̃1 mt̃2 mb̃1
mb̃2

mg̃

lightest 122.8 1497 1491 1490 2795 3153 2747 3211 4070

heaviest 127.9 4147 4113 4103 10734 12049 11077 12296 16046

mτ̃1 mτ̃2 m
χ̃
±
1

m
χ̃
±
2

m
χ̃0

1
m

χ̃0
2

m
χ̃0

3
m

χ̃0
4

tanβ

lightest 1001 1172 1647 2399 899 647 2395 2399 44

heaviest 4039 6085 7300 8409 4136 7300 8406 8409 45

Table 1: Two example spectra of the SU(5)-FUT (with µ < 0) . All masses are in GeV and rounded to 1
(0.1) GeV (for the light Higgs mass).

In our analysis of FUT [163,164] we included restrictions of third generation quark masses and
B-physics observables and it proved consistent with all the phenomenological constraints. Com-
pared to our previous analyses [46, 47, 138, 139, 165, 166], the improved evaluation of Mh prefers
a heavier (Higgs) spectrum and thus allows only a heavy supersymmetric spectrum. The coloured
spectrum easily escapes (HL-)LHC searches, but can likely be tested at the FCC-hh. However, the
lower part of the EW spectrum could be observable at CLIC.

8. Numerical Analysis of the Finite SU(3)3 Model

Below MGUT all couplings and masses of the theory run according to the RGEs of the MSSM.
Thus we examine the evolution of these parameters according to their RGEs up to two-loops for di-
mensionless parameters and at one-loop for dimensionful ones imposing the corresponding bound-
ary conditions. We further assume a unique SUSY breaking scale MSUSY and below that scale the
effective theory is just the SM.

We compare our predictions with the experimental value of mexp
t

3 and recall that the theoretical
values for mt suffer from a correction of ∼ 4% [14, 81, 167]. In the case of the bottom quark, we
take again the value evaluated at MZ . In the case of model I, the predictions for the top quark mass

3As before, these values correspond to the experimental measurements at the time of the original evaluation. Again,
the small change to the current values would not change the phenomenological analysis in a relevant way.
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(in this case mb is an input) mt are ∼ 183 GeV for µ < 0, which is above the experimental value,
and there are no solutions for µ > 0.

Figure 4: The figures show the values for the top and bottom quark masses for the FUT model SU(3)3, with
µ < 0, vs the parameter r. The thicker horizontal line is the experimental central value, and the lighter green
and orange ones are the one and two sigma limits respectively. The red points are the ones that satisfy the
B-physics constraints.

For the two-loop model II, we look for the values of the parameter r which comply with the
experimental limits given above for top and bottom quarks masses. In the case of µ > 0, for the
bottom quark, the values of r lie in the range 0.15 . r . 0.32. For the top mass, the range of values
for r is 0.35 . r . 0.6. From these values we can see that there is a very small region where both
top and bottom quark masses are in the experimental range for the same value of r. In the case of
µ < 0 the situation is similar, although slightly better, with the range of values 0.62 . r . 0.77 for
the bottom mass, and 0.4 . r . 0.62 for the top quark mass. In the above mentioned analysis, the
masses of the new particles h’s and E’s of all families were taken to be at the MGUT scale.

Taking into account new thresholds for these exotic particles below MGUT we find a wider
phenomenologically viable parameter space [168]. This can be seen in Fig. 4, where we took only
one down-like exotic particle decoupling at 1014 GeV, below than the usual MSSM.

In this case, for r ∼ 0.5 ∼ 0.62 we have reasonable agreement with experimental data for
both top and bottom quark masses, where the red points in the figure are the ones that satisfy
the B-physics constraints (at the time of the analysis) [169]. The above analysis shows that it is
worth returning with a fresh examination of this model taking into account all new experimental
constraints.

9. Numerical Analysis of the Reduced MSSM

In this section we analyze the particle spectrum predicted by the reduced MSSM [170]. We
first discuss the selection of free parameters, then apply constraints from fermion masses. Sub-
sequently we apply the remaining constraints and discuss the observability at current and future
colliders.
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9.1 Free Parameters of the Reduced MSSM

So far the relations among reduced parameters in terms of the fundamental ones derived in
Sect. 5.3 had a part which was RGI and a another part originating from the corrections, which
are scale dependent. In the analysis shown here we choose the unification scale to apply the cor-
rections to the RGI relations. It should be noted that we are assuming a covering GUT, and thus
unification of the three gauge couplings, as well as a unified gaugino mass M at that scale. Also
to be noted is that in the dimensionless sector of the theory, since Yτ cannot be reduced in favour
of the fundamental parameter α3, the mass of the τ lepton is an input parameter and consequently
ρτ , is an independent parameter too. At low energies, we fix the values of ρτ and tanβ using the
mass of the tau lepton mτ(MZ) = 1.7462 GeV. For each value of ρτ there is a corresponding value
of tanβ that gives the appropriate mτ(MZ). Then we use the value found for tanβ together with
Gt,b, as obtained from the reduction equations and their respective corrections, to determine the
top and bottom quark masses. We require that both the bottom and top masses are within 2σ of
their experimental value, which singles out large tanβ values, tanβ ∼ 42− 47. Correspondingly,
in the dimensionful sector of the theory the ρhτ

is a free parameter, since hτ cannot be reduced in
favour of the fundamental parameter M (the unified gaugino mass scale). µ is a free parameter, as it
cannot be reduced in favour of M3 as discussed above. On the other hand m2

3 could be reduced, but
here it is chosen to leave it free. However, µ and m2

3 are restricted from the requirement of EWSB,
and only µ is taken as an independent parameter. Finally, the other parameter in the Higgs-boson
sector, the C P-odd Higgs-boson mass MA is evaluated from µ , as well as from m2

Hu
and m2

Hd
,

which are obtained from the reduction equations. In total we vary the parameters ρτ , ρhτ
, M and µ .

9.2 Constraints from Fermion Masses

The first step of the numerical analysis concerns the top and the bottom quark masses. As
mentioned above, the variation of ρτ yields the values of mt (the top pole mass) and mb(MZ), the
running bottom quark mass at the Z boson mass scale, where scan points which are not within 2σ

of the experimental data are neglected. This is shown in Fig. 5 [170]. The experimental values are
indicated by the horizontal lines and are taken to be [119]

mt = 173.34±1.52 GeV , mb(MZ) = 2.83±0.1 GeV , (9.1)

with the uncertainties at the 2σ level. One can see that the scan yields many parameter points that
are in very good agreement with the experimental data. At the same time also the flavor constraints,
see Sect. 6 are applied and shown as green dots. One can see that they are in good agreement with
the measurements of the quark masses and give restrictions in the allowed ranges of M (the common
gaugino mass at the unification scale).

9.3 Predictions of the reduced MSSM for future colliders

As the next step the lightest MSSM Higgs-boson mass is evaluated. The prediction for Mh is
shown in Fig. 6 [170] as a function of M in the range 1 TeV <∼M <∼ 6 TeV. The lightest Higgs mass
ranges in

Mh ∼ 124−129 GeV , (9.2)
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Figure 5: The left (right) plot shows our results within the reduced MSSM for the top (bottom) quark mass.
The horizontal lines indicate the experimental values as given in Eq. (9.1). Taken from Ref. [170].

where we discard the “spreaded” points with possibly lower masses, which result from a numerical
instability in the Higgs-boson mass calculation. One should keep in mind that these predictions
are subject to a theory uncertainty of 3(2) GeV, see Sect. 6. The red points correspond to the full
parameter scan, whereas the green points are the subset that is in agreement with the B-physics
observables as discussed above (which do not exhibit any numerical instability). The inclusion of
the flavor observables shifts the lower bound for Mh up to ∼ 126 GeV.

The horizontal lines in Fig. 6 show the central value of the experimental measurement (solid),
the ±2.1 GeV uncertainty (dashed) and the ±3.1 GeV uncertainty (dot-dashed). The requirement
to obtain a light Higgs boson mass value in the correct range yields an upper limit on M of about
5(4) TeV for Mh = 125.1±2.1(3.1) GeV.

Naturally the Mh limit also sets an upper limit on the low-energy SUSY masses. This turns
the reduced MSSM into a highly predictive and testable theory. The full particle spectrum of
the reduced MSSM (where we restricted ourselves as before to the third generation of sfermions)
compliant with the B-physics observables is shown in Fig. 7 [170]. In the left (right) plot we impose
Mh = 125.1±3.1(2.1) GeV. Including the Higgs mass constraints in general favours the somewhat
higher part of the SUSY particle mass spectra. The tighter Mh range cuts off the very high SUSY
mass scales.

The Higgs spectrum will be fully testable at the HL-LHC, which for tanβ >∼ 40 can explore
masses up to ∼ 2 TeV via the channel pp→ H/A→ τ+τ− [171]. However, such observations
would be in agreement also with a pure 2HDM, and additional observation of the SUSY particles
will be necessary to analyze the model.

The lighter SUSY particles are given by the electroweak spectrum, which starts around ∼
1.3 TeV. They will mostly remain unobservable at the LHC and at future e+e− colliders such as
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Figure 6: The lightest Higgs boson mass, Mh, as a function of M (the common gaugino mass at the unifi-
cation scale) in the reduced MSSM. The red points is the full model prediction. The green points fulfill the
B-physics constraints (see text). Taken from Ref. [170].

the ILC or CLIC, with only the very lower range mass range below∼ 1.5 TeV might be observable
at CLIC (with

√
s = 3 TeV). The coloured mass spectrum starts at around ∼ 4 TeV, which will

remain unobservable at the (HL-)LHC. However, the coloured spectrum would be accessible at the
FCC-hh [141]. This collider could definitely confirm the SUSY spectrum of the reduced MSSM or
rule out this model.

In Tab. 2 we show three example spectra of the reduced MSSM, which span the mass range
of the parameter space that is in agreement with the B-physics observables and the Higgs-boson
mass measurement (using the same notation as in Tab. 1). The rows labelled “light” correspond
to the spectrum with the smallest m

χ̃0
1

value (which is independent of upper limit in Mh). This
point is an example for the lowest Mh values that we can reach in our scan. As discussed above,
the heavy Higgs boson spectrum starts above 1.4 TeV, which can be covered at the HL-LHC.
The coloured spectrum is found between ∼ 4 TeV and ∼ 6 TeV, outside the range of the (HL-
)LHC. The LSP has a mass of m

χ̃0
1
= 1339, which might offer the possibility of e+e− → χ̃0

1 χ̃0
1 γ

at CLIC. All other electroweak particles are too heavy to be produced at CLIC or the (HL-)LHC.
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Figure 7: The left (right) plot shows the spectrum of the reduced MSSM after imposing the constraint
Mh = 125.1±3.1(2.1) GeV. The points shown are in agreement with the B-physics observables. The light
(green) points on the left are the various Higgs boson masses. The dark (blue) points following are the two
scalar top and bottom masses, followed by the lighter (gray) gluino mass. Next come the lighter (beige)
scalar tau masses. The darker (red) points to the right are the two chargino masses followed by the lighter
shaded (pink) points indicating the neutralino masses.

Mh MH MA MH± mt̃1 mt̃2 mb̃1
mb̃2

mg̃

light 126.2 1433 1433 1446 4052 4736 3989 4723 5789

δMh = 2.1 127.2 1570 1570 1572 5361 6289 5282 6279 7699

δMh = 3.1 128.1 1886 1886 1888 6762 7951 6653 7943 9683

mτ̃1 mτ̃2 m
χ̃
±
1

m
χ̃
±
2

m
χ̃0

1
m

χ̃0
2

m
χ̃0

3
m

χ̃0
4

tanb

light 1906 2066 2430 3867 1339 2430 3864 3866 42.6

δMh = 2.1 1937 2531 3299 5166 1833 3299 5114 5116 43.1

δMh = 3.1 3153 3490 4248 6464 2376 4248 6462 6464 45.2

Table 2: Three example spectra of the reduced MSSM. “light” has the smallest m
χ̃0

1
in our sample, “δMh =

2.1(3.1)” has the largest m
χ̃0

1
for Mh ≤ 125.1+ 2.1(3.1) GeV. All masses are in GeV and rounded to 1

(0.1) GeV (for the light Higgs mass).

“δMh = 2.1(3.1)” has the largest m
χ̃0

1
for Mh ≤ 125.1+2.1(3.1) GeV. While, following the mass

relations in the reduced MSSM, the mass spectra are substantially heavier than in the “light” case,
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one can also observe that the smaller upper limit on Mh results in substantially lower upper limits
on the various SUSY and Higgs-boson masses. In both cases the heavy Higgs spectrum is within
the reach of the HL-LHC, as mentioned above. However, even in the case of δMh = 2.1 GeV, all
SUSY particles are outside the reach of the (HL-)LHC and CLIC. On the other hand, all spectra
offer good possibilities for their discovery at the FCC-hh [141], as discussed above.

9.4 Reduced MSSM Conclusions

The reduced MSSM naturally results in a light Higgs boson in the mass range measured at the
LHC. Only the Higgs sector can be tested at the HL-LHC. On the other hand, the rest of the SUSY
spectrum will remain (likely) unaccessible at the (HL-)LHC, ILC and CLIC, where such a heavy
spectrum also results in SM-like light Higgs boson, in agreement with LHC measurements [172].
In other words, the model is naturally in full agreement with all LHC measurements. It can be
tested definitely at the FCC-hh, where large parts of the SUSY spectrum would be in the kinematic
reach.
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