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1. Introduction

Einstein’s theory of General Relativity is a mathematically beautiful and experimentally tested
theory of gravity. But it is not a perfect theory – if such a theory really exists. As is well known, the
Standard Cosmological Model has a number of open problems: the nature of dark matter and dark
energy, the coincidence problem, the spacetime singularities, the right model for inflation, to name
only a few. On the gravity side, General Relativity predicts the existence of only three families
of black-hole solutions and admits no stable wormhole solutions. Also, the unification of gravity
with the other forces in nature seems unlikely within its current mathematical framework – General
Relativity is based on tensors and is not a renormalizable theory in contrast with the renormalizable
gauge field theories that are formulated in the flat Minkowski spacetime in terms of four-vectors.

Perhaps, all these accumulated problems and open questions point to the need for changing the
theoretical framework for gravity. During the last few decades, the so-called generalised gravita-
tional theories, where additional fields and higher gravitational terms may be present, have attracted
the interest of many scientists. These theories comprise a popular test-bed for the formulation of
the ultimate theory of gravity beyond Einstein’s General Theory of Relativity, and are thus under
intense research activity. These theories are of course not new; generalised gravitational theories
have emerged over the years from either the string effective action at low energies [1] or as part of a
Lovelock effective theory [2] in four dimensions or even in the form of the recently revived scalar-
tensor Horndeski/Galileon [3] theories. But, then, how are the predictions of General Relativity
affected by the presence of those additional contributions to the theory? Can we find many novel
black-hole solutions beyond the limits of General Relativity? Are the known black-hole solutions
of General Relativity not valid any more?

In the context of General Relativity, the black-hole solutions have been indeed uniquely deter-
mined and classified according to their properties (mass, charge and angular-momentum). No-Hair
theorems, that forbid the association of a black hole with any other “charge” or field, were for-
mulated quite early on. The existence of black-hole solutions associated with a non-trivial scalar
field in the region outside the black-hole horizon has also been intensively studied. The old no-hair
theorem [4] was formulated in the seventies, and excluded static black holes with a scalar field.
However, this was outdated by the discovery of black holes with Yang-Mills [5], Skyrme fields [6]
or conformally-coupled scalar fields [7]. Twenty years later, the novel no-hair theorem [8] was
formulated (for more recent analyses, see [9, 10, 11]). But this was also shown to be evaded: the
dilatonic black holes were soon discovered [12] followed by the coloured black holes [13, 14], the
rotating black holes [15, 16] and more recently the black holes in the context of the shift-symmetric
Galileon theory [17, 18].

Compared, however, to the possibilities that the concept of a generalised gravitational the-
ory opens up, the number of novel black-hole solutions that have been found is relatively small.
The question then comes up: can we extend this ‘elite’ group of theories that evade the no-hair
theorems and thus find new black-hole solutions? In this work, we will consider a class of grav-
itational theories where a scalar field ϕ has a general coupling function f (ϕ) to the quadratic
gravitational Gauss-Bonnet (GB) term. It is, in fact, in the context of this theory that the dilatonic
[12], the coloured [13, 14] and the shift-symmetric black holes [18] have emerged. After we give
some further motivation for the chosen gravitational theory, we will investigate whether our theory
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may evade the existing no-hair theorems for an arbitrary form of the scalar-GB coupling func-
tion f (ϕ), and allow for the emergence of novel black-hole solutions, with a regular horizon and
an asymptotically-flat limit. We will review some of the recently derived results in the literature
[19, 20, 21] and discuss the characteristics of these novel solutions. At the final part of this work,
we will also investigate whether solutions may arise in the context of the pure scalar-Gauss-Bonnet
theory where the Ricci scalar may be ignored.

2. The Einstein-Scalar-Gauss-Bonnet theory

In this work, we will therefore consider the following generalised gravitational theory

S =
1

16π

∫
d4x

√
−g
[

R− 1
2

∂µϕ ∂ µϕ + f (ϕ)R2
GB

]
, (2.1)

where the GB term is defined as

R2
GB = Rµνρσ Rµνρσ −4RµνRµν +R2 , (2.2)

in terms of the Ricci scalar curvature R, the Ricci tensor Rµν and the Riemann tensor Rµνρσ .
This theory has a number of attractive points. First, apart from the linear Ricci term, it contains

a quadratic gravitational term i.e. the next important term in a strong-curvature regime such as near
a black-hole horizon; nevertheless, it leads to field equations with only up to 2nd-order derivatives,
and with no Ostrogradski instabilities [22]. In addition, it is a very “rich” theory, since:

• if we set f (ϕ)∼ ln
[
2eϕ η4(ieϕ )

]
, where η(x) is the so-called Dedekind function, we recover

the moduli part of the heterotic superstring effective action at low energies. It was in the
context of this theory that singularity-free cosmological solutions emerged [23];

• if we set f (ϕ) ∼ eϕ , we recover the dilatonic superstring effective theory in the context of
which the dilatonic black holes [12] and shortly afterwards the coloured black holes [13, 14]
(with the addition of a Yang-Mills field) were discovered. Also, in the context of the same
theory, stable, traversable wormhole solutions were found in [24];

• if we set f (ϕ) ∼ ϕ , then we recover the shift-symmetric Galileon theory, in the context of
which the corresponding static black holes arise [18].

Choosing therefore the form of the coupling function between the scalar field and the GB
term to have a specific form, particular forms of the theory (2.1) are obtained each one leading
to interesting families of either gravitational or cosmological solutions. Here, we will focus on
the case of black holes and pose the following question: for what other forms, apart from the
exponential and linear one, one may find novel black-hole solutions? In order to find the answer
to this question, we will keep the form of f (ϕ) arbitrary, and we will look for regular, static,
spherically-symmetric and asymptotically-flat black-hole solutions. These will be described by the
line-element

ds2 =−eA(r)dt2 + eB(r)dr2 + r2(dθ 2 + sin2 θ dφ2) , (2.3)
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where A(r) and B(r) are unknown functions of only the radial coordinate. The scalar field ϕ will
also be assumed to be static and spherically-symmetric and thus to depend only on r, too.

By varying the above action with respect to the metric tensor and scalar field, we obtain the
following gravitational field equations and the equation for the scalar field:

Gµν = Tµν , ∇2ϕ + ḟ (ϕ)R2
GB = 0 , (2.4)

respectively, where a dot over the coupling function f denotes the derivative with respect to the
scalar field. The energy-momentum tensor has the form

Tµν = −1
4

gµν∂ρϕ∂ ρϕ +
1
2

∂µϕ∂νϕ − 1
2
(gρµgλν +gλ µgρν)ηκλαβ R̃ργ

αβ ∇γ∂κ f , (2.5)

where
R̃ργ

αβ = ηργστRσταβ = εργστRσταβ/
√
−g . (2.6)

Using the form of the line-element (2.1), the Einstein’s equations take the following explicit form

4eB(eB + rB′−1) = ϕ ′2[r2eB +16 f̈ (eB −1)
]
−8 ḟ

[
B′ϕ ′(eB −3)−2ϕ ′′(eB −1)

]
, (2.7)

4eB(eB − rA′−1) =−ϕ ′2r2eB +8
(
eB −3

)
ḟ A′ϕ ′, (2.8)

eB[rA′2 −2B′+A′(2− rB′)+2rA′′]=−ϕ ′2reB

+8ϕ ′2 f̈ A′+4 ḟ [ϕ ′(A′2 +2A′′)+A′(2ϕ ′′−3B′ϕ ′)], (2.9)

while the scalar equation reads

2rϕ ′′+(4+ rA′− rB′)ϕ ′+
4 ḟ e−B

r

[
(eB −3)A′B′− (eB −1)(2A′′+A′2)

]
= 0. (2.10)

The unknown quantities, that we seek to determine through the solution of the system of Eqs.
(2.7)-(2.10), are the scalar field ϕ and the metric functions A and B. However, Eq. (2.8) may
take the form of a second-order polynomial with respect to eB, which can then be solved to give
eB = (−β ±

√
β 2 −4γ)/2, where

β =
r2ϕ ′2

4
− (2 ḟ ϕ ′+ r)A′−1 , γ = 6 ḟ ϕ ′A′ . (2.11)

Then, eliminating B from the set of the remaining equations (2.7), (2.9) and (2.10), we may form a
system of two independent, ordinary differential equations of second order for the functions A and
ϕ :

A′′ =
P
S
, ϕ ′′ =

Q
S
. (2.12)

The functions P, Q and S are rather complicated expressions of (r,ϕ ′,A′, ḟ , f̈ ) and may be found in
[19].

We will first study analytically our set of field equations in order to demonstrate that these
may allow for the construction of a black-hole solution with a regular horizon provided that the,
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otherwise arbitrary, coupling function f satisfies a set of simple constraints. For a spherically-
symmetric spacetime, the presence of a horizon is realised when

eA(r) → 0 , e−B(r) → 0 . (2.13)

In fact, the correct behaviour of e−B follows from the one of eA only for the (+) sign in front of
the square-root in the expression for eB that follows from Eq. (2.8); thus, from now on we focus
only on that sign. Also, the regularity of the horizon is guaranteed by the requirement that the
scalar field and its derivatives remain finite there. As we will soon prove, the vanishing of eA at
the horizon is equivalent to A′ → ∞. Therefore, assuming that A′ → ∞ while ϕ ′ remains finite as
r → rh, Eqs. (2.12) take the approximate forms

A′′ =−r4 +4r3ϕ ′ ḟ +4r2ϕ ′2 ḟ 2 −24 ḟ 2

r4 +2r3ϕ ′ ḟ −48 ḟ 2
A′2 + ... (2.14)

ϕ ′′ =−(2ϕ ′ ḟ + r)(r3ϕ ′+12 ḟ +2r2ϕ ′2 ḟ )
r4 +2r3ϕ ′ ḟ −48 ḟ 2

A′+ ... (2.15)

The second of the above equations leads to the divergence of ϕ ′′ at the horizon if f (ϕ) is either
zero or left unconstrained. However, ϕ ′′ may be rendered finite if either one of the two expressions
in the numerator of Eq. (2.15) is zero close to the horizon.

For the choice (2ϕ ′ ḟ + r) = 0, and for every elementary form of f (ϕ) we have tried, we are
always led to either a divergent or a trivial scalar field near the horizon. Thus, for the construction
of a regular horizon in the presence of a non-trivial scalar field, we are led to consider the second
choice:

r3ϕ ′+12 ḟ +2r2ϕ ′2 ḟ = 0 . (2.16)

This may be easily solved to yield:

ϕ ′
h =

rh

4 ḟh

(
−1±

√
1−

96 ḟ 2
h

r4
h

)
, (2.17)

where all quantities have been evaluated at rh. To ensure that ϕ ′
h is real, the quantity under the

square-root should be always positive; therefore, we must impose the following constraint on the
coupling function

ḟ 2
h <

r4
h

96
. (2.18)

Going back to the 1st of Eqs. (2.12), and using the constraint (2.17), we find that the coefficient
of A′2 simplifies to −1. Then, upon integration with respect to r, we obtain A′ = (r− rh)

−1+O(1).
This is, in fact, in accordance to our earlier claim that A′ → ∞ close to the horizon. We may now
put everything together and write the near-horizon solution as

eA = a1(r− rh)+ ... , (2.19)

e−B = b1(r− rh)+ ... , (2.20)

ϕ = ϕh +ϕ ′
h(r− rh)+ϕ ′′(r− rh)

2 + ... . (2.21)
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The above describes indeed a regular black-hole horizon in the presence of a scalar field provided
that ϕ ′

h and the coupling function f satisfy the constraints (2.17)-(2.18).
We will now study the regime of asymptotic infinity, to show that a general coupling function

f (ϕ) for the scalar field does not interfere with the requirement that an asymptotically-flat limit
exists for the spacetime (2.3). We will assume the following power-law expressions for the metric
functions and scalar field, in the limit r → ∞,

eA = 1+
∞

∑
n=1

pn

r
, eB = 1+

∞

∑
n=1

qn

r
, ϕ = ϕ∞ +

∞

∑
n=1

dn

r
. (2.22)

Substituting these expressions into the field equations, we may determine the arbitrary coefficients
(pn,qn,dn). In fact, p1 and d1 remain arbitrary, and we associate them with the ADM mass and
scalar charge, respectively: p1 ≡ −2M and d1 = D. Then, the asymptotic solutions for the metric
functions and scalar field at large distances read:

eA = 1− 2M
r

+
MD2

12r3 +
24MD ḟ +M2D2

6r4 + ... ,

eB = 1+
2M
r

+
16M2 −D2

4r2 +
32M3 −5MD2

4r3

+
16M(48M3 −13MD2 −24D ḟ )+3D4

48r4 + ... , (2.23)

ϕ = ϕ∞ +
D
r
+

MD
r2 +

32M2D−D3

24r3 +
12M3D−24M2 ḟ −MD3

6r4 + ... .

The above asymptotic behaviour is characterised by the ADM mass M and scalar charge D of the
black hole. We also note that the explicit form of the coupling function f (ϕ) is almost irrelevant
as it first makes its appearance in terms of order O(1/r4) in the above expressions. We may
therefore conclude that the scalar-tensor theory (2.1) with a general coupling function f (ϕ) is
always compatible with either a regular horizon or an asymptotically-flat limit.

However, no complete black-hole solution may be constructed unless the aforementioned
asymptotic solutions are smoothly matched. To investigate whether this is in principle possible,
we turn to the novel no-hair theorem [8] and examine its requirements under which it may forbid
the existence of such a solution. This theorem states first that, at asymptotic infinity, the T r

r com-
ponent of the energy-momentum tensor is positive and decreasing. Indeed, using the asymptotic
solution (2.23), we find that this has the form

T r
r =

e−Bϕ ′

4

[
ϕ ′−

8e−B
(
eB −3

)
ḟ A′

r2

]
≃ ϕ ′2

4
∼ O(

1
r4 ). (2.24)

As expected, our result agrees with the one derived in [8] for a minimally-coupled scalar field
since at large distances, where the curvature of spacetime is small, we do not expect the quadratic
GB term to play any role in the components of the energy-momentum tensor. In the near-horizon
regime, the requirements of the novel no-hair theorem dictate that T r

r is negative and increasing; if
that holds, then the smooth connection of these two asymptotic behaviours for T r

r would demand
the presence of an extremum at an intermediate point in its profile, a feature that may be excluded

5
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by using the positivity and conservation of energy density. However, in our case, employing the
asymptotic solutions (2.19)-(2.21), we find that

T r
r =−2e−B

r2 A′ϕ ′ ḟ +O(r− rh) . (2.25)

If we use the fact that close to the horizon, A′ > 0, the above means that

sign(T r
r )h =−sign( ḟhϕ ′

h) = 1∓
√

1−96 ḟ 2/r4
h)> 0 , (2.26)

where we have used the constraint Eq. (2.17) for the regularity of the horizon. Thus, the above
expression is always positive-definite, and the second clause of the novel no-hair theorem is not
true in our case. Also, we find that T r

r is always decreasing close to rh and as a result, the novel
no-hair theorem is non-applicable in our theory. In other words, the presence of the GB term near
the horizon – where the curvature is strong – plays an important role and changes dramatically
the profile of the T r

r, in a way that does not forbid the smooth connection of its two asymptotic
behaviours.

In order to complete the analytical study of the theory, let us also address the older version
of the no-hair theorem for scalar fields [4], that employs the scalar equation of motion. As we
will shortly see, this also fails to exclude the existence of black-hole solutions in our theory (2.1).
Multiplying the scalar equation (2.10) by f (ϕ) and integrating over the black-hole exterior region,
we obtain the integral constraint∫

d4x
√
−g f (ϕ)

[
∇2ϕ + ḟ (ϕ)R2

GB
]
= 0 . (2.27)

Integrating by parts the first term, the above becomes∫
d4x

√
−g ḟ (ϕ)

[
∂µϕ ∂ µϕ − f (ϕ)R2

GB
]
= 0 . (2.28)

The boundary term [
√
−g f (ϕ)∂ µϕ ]∞rh

vanishes both at the horizon (due to the e(A−B)/2 factor) and
at infinity (due to the ∂ µϕ factor). Since ϕ = ϕ(r), the first term in Eq. (2.28) gives ∂µϕ ∂ µϕ =

grr(∂rϕ)2 > 0 throughout the exterior region. Also, for the metric (2.3), the GB term has the explicit
form

R2
GB =

2e−2B

r2

[
(eB −3)A′B′− (eB −1)(2A′′+A′2)

]
. (2.29)

Employing the asymptotic solutions near the horizon (2.19)-(2.20) and at infinity (2.23), we may
easily find the results

R2
GB

∣∣∣
rh
=

12e−2B

r4 A′2 + · · · , R2
GB

∣∣∣
∞
=

48M2

r6 + · · · . (2.30)

Both of the above expressions are positive definite. Therefore, in the simplest possible case where
R2

GB retains a positive sign throughout the radial regime (as we will indeed find) and f (ϕ) is also
sign-definite, Eq. (2.28) allows for black-hole solutions with scalar hair for every choice of the
coupling function that merely satisfies f (ϕ) > 0. We thus observe that the old no-hair theorem
seems to be more easily evaded for the theory (2.1) than the novel one under a simple assumption
on the sign of the scalar-field-GB coupling function.

6
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Figure 1: The scalar field ϕ (left plot) and the T r
r component (right plot) for different coupling functions

f (ϕ), for a = 0.01 and ϕh = 1 [19].

The above results and theoretical arguments clearly open the way for the construction of novel
black-hole solutions in the context of the general theory (2.1). We have therefore numerically
integrated the system of equations (2.12), and determined a large number of black-hole solutions
with scalar hair for a variety of forms of the coupling function f (ϕ): exponential, odd and even
power-law, odd and even inverse-power-law. These forms are all simple, natural choices to keep
the GB term in the 4-dimensional theory. Once the form of f (ϕ) was chosen, we only needed to
decide the input values (ϕh,ϕ ′

h). The first quantity was in fact a free parameter constrained only
by the condition (2.18) while the second one was uniquely determined by the regularity constraint
(2.17) of the black-hole horizon. In fact, following this “recipe”, every pair of initial values (ϕh,ϕ ′

h)

leads to a regular black-hole solution with a non-trivial scalar hair.
At the left plot of Fig. 1, we depict the profile of the scalar field for an indicative set of

those solutions. For easy comparison, the coupling constant has been set to a = 0.01 and the
near-horizon value of the field to ϕh = 1 in all cases. The profiles of the scalar field are every-
where finite exhibiting either a decreasing or increasing behaviour away from the black-hole hori-
zon. This latter feature is dictated by the constraint (2.17) that demands ϕ ′

h ḟh < 0. Therefore,
for f (ϕ) = (aeϕ ,aϕ 2,aϕ 3), that all have ḟh > 0, the scalar field must have a negative ϕ ′

h; for
f (ϕ) = (ae−ϕ ,aϕ−1,aϕ−4), that have ḟh < 0, Eq. (2.17) demands a positive ϕ ′

h. In all cases, the
scalar field reduces to a constant asymptotic value at large distances from the black-hole horizon.

At the right plot of Fig. 1, we present the T r
r component of the energy-momentum tensor

for the same indicative family of solutions. Again, T r
r remains finite and exhibits the features that

guaranteed the evasion of the novel no-hair theorem: it is always positive and decreasing both near
the black-hole horizon and far away from it. It is worth mentioning that the decrease of T r

r close to
the horizon – a feature that could not be ensured as it involved ϕ ′′

h which is not an input parameter
– automatically appears for every solution we have found, and does not need any further action
or fine-tuning of the free parameters. We finally note that, for ϕ > 0, all the above forms of f (ϕ)
satisfy also the constraint f (ϕ)> 0, derived above for the evasion of the old no-hair theorem.

We also present the solution for the two metric components (|gtt |,grr) and the GB term R2
GB at

the left and right plots of Fig. 2, respectively, for the indicative case of f (ϕ) = ae−ϕ . The metric
components exhibit the expected behaviour near the black-hole horizon with gtt vanishing and grr

diverging at rh = 1 (where we have fixed the horizon radius). In order to ensure asymptotic flatness

7
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Figure 2: The metric components (left plot) and the Gauss-Bonnet term R2
GB (right plot) for the exponential

coupling function f (ϕ) = ae−ϕ , for a = 0.01 and ϕh = 1 [19].

at radial infinity, the free parameter a1 appearing in the near-horizon solution (2.19) is appropriately
chosen. On the other hand, the GB term remains finite and positive-definite over the entire radial
domain - in fact it displays the monotonic behaviour, hinted by its two asymptotic limits (2.30),
that causes the evasion of the old no-hair theorem. As expected, it contributes significantly near the
horizon, where the curvature is large, and quickly fades away as we move towards larger distances.
The profile of the metric components and GB term exhibit the same qualitative behaviour in all
families of black-hole solutions that we have found.

Some of the characteristics of the black-hole solutions we found [19] are represented in the two
plots of Fig. 3, where we depict the indicative case of f (ϕ) = a/ϕ . The scalar charge D depicted
in the left plot, that characterises the scalar field at infinity, is in fact a function of the black-hole
mass. The determination of an analytic relation that connects D with M is not an easy task (for the
exponential case, that task was performed in [12]). Nevertheless, a dependence of D on M always
emerged through the numerical integration, for every form of the coupling function, a result that
clearly renders the scalar hair secondary. Also, a common characteristic in all cases is that, as the
mass of the black hole increases, the scalar charge decreases and eventually vanishes when our
black-hole solutions matches the Schwarzschild solution.

0.0009<α<0.919

φh=3, rh=1

0.5 1 5 10
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Figure 3: The scalar charge D (left plot), and the ratios Ah/ASch and Sh/SSch (right plot, lower and upper
curve respectively) in terms of the mass M, for f (ϕ) = a/ϕ [19].
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The horizon area of the black hole, given by Ah = 4πr2
h, is depicted in the right plot of Fig. 3

normalised in units of the horizon area of the Schwarzschild solution with the same mass. We
observe that this ratio is always smaller than unity, which means that all GB black-hole solutions
are smaller than their GR analogues. The area curve also stops abruptly at its lower end, thus
exhibiting the existence of a lower bound on the horizon area and thus on the mass of the black
hole (see also [12, 25]). Beyond this lower value, the black hole ceases to exist — the latter feature
is due to the bound (2.18) emerging from the positivity of the quantity under the square-root in Eq.
(2.17), that may be also written as r2

h > 4
√

6| ḟh|. Finally, the entropy of the black-hole solutions
may be computed, for an arbitrary form of f (ϕ), following the method outlined in [14]. Then, it is
found to be

Sh =
Ah

4
+4π f (ϕh) . (2.31)

The ratio of the entropy Sh of the GB black holes over the one of the Schwarzschild black hole,
SSch = Ah/4, is also depicted in the right plot of Fig. 3. For the particular form of the coupling
function employed in this case, i.e. the inverse linear form, the entropy ratio comes out to be larger
than unity for the entire mass range, a result that renders this particular family of solutions more
thermodynamically stable than the corresponding Schwarzschild black hole. For different forms of
the coupling function though, the curve of the entropy ratio may lie in whole or in parts below unity
thus revealing an instability for the entire or parts of the mass regime. In all cases, as the mass M
increases, the entropy ratio always reduces to unity as the Schwarzschild limit is approached.

3. Asymptotically (Anti)-de Sitter GB black holes

We would like now to extend the previous study by adding a cosmological constant Λ in the
spacetime, either positive or negative. The action functional of the theory then reads [20]

S =
1

16π

∫
d4x

√
−g
[

R− 1
2

∂µϕ∂ µϕ + f (ϕ)R2
GB −2Λ

]
. (3.1)

In this case, the field equations (2.4) remain unchanged apart from the shift

Tµν → Tµν −Λgµν , (3.2)

due to the addition of the cosmological constant. Despite the minimal change, though, the situation
differs a lot from the one where the cosmological constant is ignored. First of all, we do not expect
the spacetime to be asymptotically-flat any more - we expect that this may have the form of an
asymptotically (Anti)-de Sitter spacetime. However, this will also depend on the behaviour of the
scalar field itself since this also contributes to the form of the energy-momentum tensor at large
distances from the black-hole spacetime. In addition, since the cosmological constant permeates
the whole spacetime, we expect that its presence would be important also close to the black-hole
horizon, and that the previous constraints, under which regular black-hole solutions have emerged,
may be now modified.

To investigate the above, we repeat the analytical study of the field equations both close to
and far away from the black-hole horizon. In order to determine first the number of independent
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unknown functions of the problem, we use again the (rr)-component of the gravitational equations
to solve for the metric function eB in terms of A and ϕ . In this case, we find

eB =
−β ±

√
β 2 −4αγ

2α
, (3.3)

where now

α = 1−Λr2, β =
r2ϕ ′2

4
− (2 ḟ ϕ ′+ r)A′−1, γ = 6 ḟ ϕ ′A′. (3.4)

Employing the above into the remaining field equations, we obtain again a system of two indepen-
dent, ordinary, 2nd order differential equations for A and ϕ similar to the one given by Eq. (2.12) -
the interested reader may find the new expressions of the quantities P, Q and S in [20].

Close to the horizon, we demand again that A′ → ∞ while the scalar field and its derivatives
remain finite. Then, the system (2.12) demands once again that the following constraint should
hold [20]

ϕ ′
h =−

r3
h(1−Λr2

h)+16Λrh ḟ 2
h (3−Λr2

h)± (1−Λr2
h)
√

C

4 ḟ
[
r2

h −Λ(r4
h −16 ḟ 2

h )
] , (3.5)

where all quantities have been evaluated at r = rh. The quantity C under the square root stands for
the following combination

C = 256Λ ḟ 4
h
(
Λr2

h −6
)
+32r2

h ḟ 2
h
(
2Λr2

h −3
)
+ r6

h ≥ 0 , (3.6)

and must always be non-negative for ϕ ′
h to be real. Using again the constraint (3.5) in the approx-

imated form of the first of Eqs. (2.12) for A close to the horizon, we may uniquely construct the
form of the black-hole horizon solution. This has exactly the same functional form as the one
constructed for the case of vanishing Λ, i.e. Eqs. (2.19)-(2.21). The presence of the cosmological
constant modifies though the exact expressions of the basic constraint (3.5) for ϕ ′

h and of the quan-
tity C given in (3.6), the validity of which ensures the existence of a regular black-hole horizon.
As in the case of a vanishing cosmological constant, the exact form of the coupling function f (ϕ)
does not affect the emergence of an asymptotic, regular black-hole solution.

At large distances from the black-hole horizon, we must distinguish between a positive and
a negative cosmological constant. In the presence of a positive cosmological constant, a second
horizon, the cosmological one, is expected to emerge at a radial distance r = rc > rh. We demand
that this horizon is also regular, with the scalar field ϕ and its derivatives being again finite in
its vicinity. By following a method identical to the one followed in section 2 near the black-hole
horizon, we arrive at the following constraint

ϕ ′
c =−r3

c(1−Λr2
c)+16Λrc ḟ 2

c (3−Λr2
c)± (1−Λr2

c)
√

C̃

4 ḟ
[
r2

c −Λ(r4
c −16 ḟ 2

c )
] , (3.7)

for ϕ ′ at the cosmological horizon, with C̃ now being given by the non-negative expression

C̃ = 256Λ ḟ 4
c
(
Λr2

c −6
)
+32r2

c ḟ 2
c
(
2Λr2

c −3
)
+ r6

c ≥ 0 . (3.8)
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Employing Eq. (3.7), the solution for the metric function A may be again constructed. Overall, the
asymptotic solution of the field equations near a regular, cosmological horizon will have the form

eA = a2 (rc − r)+ ..., (3.9)

e−B = b2 (rc − r)+ ..., (3.10)

ϕ = ϕc +ϕ ′
c(rc − r)+ϕ ′′

c (rc − r)2 + ..., (3.11)

where care has been taken for the fact that r ≤ rc. Once again, the explicit form of the coupling
function f (ϕ) is of minor importance for the existence of a regular, cosmological horizon.

For a negative cosmological constant, and at large distances from the black-hole horizon, we
expect the spacetime to assume a form close to that of the Schwarzschild-Anti-de Sitter solution.
Thus, we assume the following approximate forms for the metric functions

eA(r) =

(
k− 2M

r
−

Λe f f

3
r2 +

q2

r2

)(
1+

q1

r2

)2
, (3.12)

e−B(r) = k− 2M
r

−
Λe f f

3
r2 +

q2

r2 , (3.13)

where k, M, Λe f f and q1,2 are arbitrary constants. Substituting the above expressions into the scalar
field equation (2.10), we obtain at first order the constraint

ϕ ′′(r)+
4
r

ϕ ′(r)−
8Λe f f ḟ

r2 = 0 . (3.14)

Contrary to what happens close to the horizons (either black-hole or cosmological ones), the form
of the coupling function f (ϕ) now affects the asymptotic form of the scalar field at large distances.
The easiest case is that of a linear coupling function, f (ϕ) = aϕ , first studied in [26]. The scalar
field, at large distances, may then be shown to have the approximate form

ϕ(r) = ϕ∞ +d1 lnr+
d2

r2 +
d3

r3 + ... , (3.15)

where again (ϕ∞,d1,d2,d3) are arbitrary constant coefficients. In fact, this form describes the scalar
field at large distances in the perturbative limit, i.e. in the limit of small GB coupling constant a,
independently of the exact form of the coupling function. In addition, as our exact numerical
analysis has shown, the dominant term in the expression of ϕ at large distances from the black-hole
horizon is indeed described by a logarithmic term even in the non-perturbative limit. The constant
coefficients d1 and Λe f f may be determined through the first-order constraints that follow from
the gravitational equations, upon substitution of the approximate forms (3.12)-(3.13), and they are
given by

d1 =
8
3

αΛe f f , Λe f f

(
3+

80α2Λ2
e f f

9

)
= 3Λ . (3.16)

In order to determine the values of the remaining coefficients, one needs to derive higher-order
constraints. For example, the coefficients k, q1 and d2 are found at third-order approximation while
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Figure 4: The metric components |gtt | and grr (left plot), and the energy-momentum tensor components
(right plot) in terms of the radial coordinate r, for f (ϕ) = aϕ 2 [20].

for q2 or d3 one needs to go even higher. In contrast, the coefficient M remains arbitrary and may
be interpreted as the gravitational mass of the solution.

The complete black-hole solutions were determined once again though the numerical integra-
tion of the system (2.12). Starting from the case of a negative cosmological constant (Λ < 0), the
analysis proceeded as in the asymptotically-flat case, with regular, black-hole solutions with non-
trivial scalar hair and an asymptotically Anti-de Sitter behaviour emerging for every set of input
values (ϕh,ϕ ′

h) that satisfy the constraints (3.5) and (3.6). In the left plot of Fig. 4, we depict the
metric components |gtt | and grr for the indicative case of f (ϕ) = aϕ 2. The expected behaviour
near the black-hole horizon soon changes to the asymptotic AdS behaviour with the |gtt | compo-
nent diverging and the grr component vanishing at large distances from the black-hole horizon.
This behaviour is fully justified by the profiles of the energy-momentum components depicted at
the right plot of Fig. 4; we observe that all components reduce to constant values proportional to
the negative cosmological constant, and that the scalar field has a “localised” contribution to the
energy-momentum tensor of the theory that vanishes at large distances.

The profile of the scalar field for a variety of values of the cosmological constant, and f (ϕ) =
aϕ 2 is presented at the left plot of Fig. 5, while the behaviour of the constant coefficient d1 for
a variety of forms of f (ϕ) is depicted at the right plot of the same figure. We observe that,
for small values of Λ, the scalar field approaches an almost constant value at infinity similarly
to the asymptotically-flat case. However, as Λ increases (in absolute value), the profile of the
scalar field changes adopting a non-constant, logarithmic dependence on the radial coordinate.
Similar results were derived for all other black-hole solutions produced for the choices f (ϕ) =
e±ϕ ,ϕ±2n,ϕ±(2n+1), lnϕ . The values of d1, at the right plot, give a measure of how much the scalar
field deviates from a constant asymptotic value: it is clear that this deviation is larger for the small-
mass GB black holes while, as M increases, this coefficient decreases and eventually vanishes when
the Schwarzschild-Anti-de Sitter limit is recovered.

We finally present two plots, for the horizon area ratio (left plot) and entropy ratio (right
plot) in Fig. 6, again for a variety of black-hole solutions and for different forms of the coupling
function f (ϕ). We have considered a rather large value of the cosmological constant in order to
maximize its effect on these two quantities. We observe that, even for large values of Λ, the area
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Figure 5: The scalar field ϕ (left plot) for a variety of values of the cosmological constant, and the constant
coefficient d1 (right plot) for a variety of forms of the coupling function f (ϕ) [20].

ratio remains smaller than unity (apart from the logarithmic case) - in fact, the black-hole solutions
we have found tend to have a larger lower limit for the black-hole horizon radius as Λ increases. In
addition, the increase in the value of the cosmological constant tends to increase the entropy ratio
[with the entropy of the GB black hole being given by the same formula (2.31)] and therefore to
make the GB black holes more thermodynamically stable compared to their SAdS analogues of
General Relativity.

Let us now turn to the case of a positive cosmological constant (Λ > 0). Despite our efforts, no
complete black-hole, asymptotically de Sitter solutions were found. Starting from the near-horizon
asymptotic solutions (2.19)-(2.21), the numerical integration would proceed as normal but would
abruptly stop before the cosmological-horizon solution (3.9)-(3.11) could be reached. Although the
two asymptotic solutions near the black-hole and cosmological horizons do independently emerge,
the effort to match them in a smooth way via an intermediate solution fails for all choices of param-
eters we have tried. To demonstrate this, in Fig. 7 we display the result of our numerical integration
for the indicative case of α = 0.01, ϕh =−1 and Λ = 0.01. The coupling function has been chosen
to be f (ϕ) = αe−ϕ , however, the same qualitative behaviour was found for every choice of f (ϕ)
we have considered. From the metric functions and the scalar-field profiles displayed in the two
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Figure 6: The horizon area AGB/ASAdS (left plot) and entropy ratio SGB/SSAdS (right plot) for a variety of
forms of the coupling function f (ϕ) and in terms of the mass M [20].
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Figure 7: The metric functions |gtt | and grr of the spacetime (left plot) and the scalar field ϕ (right plot) in
terms of the radial coordinate r, for a positive cosmological constant and coupling function f (ϕ) = αe−ϕ

[20].

plots, we clearly see that an asymptotic solution describing a regular black-hole horizon is indeed
formed but the cosmological horizon solution is never reached.

Although it is very difficult to generalise the no-hair analysis presented in the previous section,
one could, nevertheless, gain some understanding of the situation by examining the form of the
near-horizon value of the T r

r component of the energy-momentum tensor given that is given by

T r
r =−2e−B

r2 A′ϕ ′ ḟ −Λ+O(r− rh) . (3.17)

It becomes clear that the presence of a negative cosmological constant (Λ < 0) in the theory always
gives a positive contribution to T r

r , and enhances the probability of obtaining regular black holes.
On the other hand, the contribution of a positive cosmological constant (Λ > 0) to T r

r is always
negative, and this makes the evasion of the no-hair theorem less likely.

4. The pure scalar-Gauss-Bonnet theory

As we saw in Section 2, where the asymptotically-flat case was studied, the quadratic GB term
is negligible at large distances from the black-hole horizon but is very important near the horizon –
in fact, the smaller the black hole, the larger the curvature, and the more important the GB term is.
Can we then claim that there is a class of black-hole solutions that may be attributed almost solely
to the GB term?

The motivation for this may be looked for in the cosmological set-up. We mentioned previ-
ously that, in the context of the moduli part of the heterotic superstring effective action, singularity-
free cosmological solutions were found in [23] (and further studied in [27, 28]). These solutions
were found numerically due to the complexity of the set of field equations. However, in [29], it was
demonstrated that, in the early universe, as t → 0, the Ricci term R becomes negligible while the
GB term R2

GB dominates. In that limit, the R term may be ignored, upon which the field equations
are greatly simplified and thus may be analytically solved. This analysis has yielded, as expected,
the class of singularity-free solutions in an analytical form that were smoothly connected to the
numerical solutions found in [27].
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We will therefore investigate whether a regular black-hole solution can arise in the context of a
pure scalar-GB theory, i.e. in the absence of the linear Ricci term. By ignoring all terms in the field
equations related to the Ricci term, these are simplified — but can we construct again a regular
horizon? If we assume as before that, as r → rh, ϕ ′ remains finite while A′ diverges, Eq. (2.8) now
yields: eB ≃ 3+O(1/A′); but this does not describe a black hole. We may alternatively demand
that eB → ∞ instead, as r → rh; then, Eq. (2.8) gives: A′ ≃ r2ϕ ′/8 ḟ +O(e−B). In this case, A(r) is
the dependent quantity, and Eqs. (2.7) and (2.9) form a system of two differential equations for B
and ϕ . In the limit r → rh, we find the results [19]

B′ =−2
r

eB +O
(
e−B) , ϕ ′′ =−eB

r
ϕ ′+O

(
e−B) . (4.1)

Upon integration, the first equation leads to the solution e−B = 2ln(r/rh), which does resemble a
horizon, but the second one reveals that this horizon is not regular unless ϕ ′(rh) = 0, an assumption
that trivialises the contribution of the GB term.

Alternative ansatzes for the form of the spacetime around the sought-for black hole have also
failed to lead to a regular horizon in the absence of the Ricci scalar [34]. A similar negative result
was also found in the case where a cosmological constant, either positive or negative, was added
to the model. Although, it seems as, in the absence of the Ricci scalar, the GB term may support
a non-trivial scalar field, and that in turn the scalar field may keep the GB term in the theory, a
pure scalar-GB solution cannot emerge. It is quite likely that the regime of dominance of the GB
term over the Ricci term lies beyond the minimum-mass limit, whereas no such “barrier” exists in
the cosmological set-up where one can approach an early enough time period, and thus a period of
strong enough curvature for the GB term to dominate.

5. Conclusions

In the absence of a Quantum Theory of Gravity, the formulation of a generalised theory of
gravity may be the way forward in gravitational physics. The Einstein-scalar-Gauss-Bonnet theory
is a representative example of such a theory and has been intensively studied for decades leading
to novel gravitational and cosmological solutions.

Here, we have considered a general Einstein-scalar-GB theory, and we have demonstrated
that the emergence of regular black-hole solutions is a generic feature. For an arbitrary cou-
pling function f (ϕ), we were always able to construct a regular black-hole horizon as well as
an asymptotically-flat solution at infinity. Under a mild only constraint on the value of ϕ ′

h, con-
nected to the regularity of the horizon, we explicitly showed that both the old and the novel no-hair
theorems are easily evaded. Our numerical analysis has subsequently led to a large number of reg-
ular black-hole solutions for different choices of f (ϕ), all characterised by a non-trivial scalar hair
(for similar black-hole solutions, see also [30, 31]).

All GB black-hole solutions are characterised by the existence of a lower bound for the hori-
zon radius of the black hole, and thus a lower-bound on their mass, a feature that distinguishes
them from their GR analogues [19, 25]. Thus, in the small-mass limit, observable effects may in-
clude deviations from standard GR in the calculation of the bending angle of light, the precession
observed in near-horizon orbits and the spectrum from their accretion discs [32]. The emission
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of scalar radiation strongly depends to the existing coupling of the scalar field to ordinary matter,
while the measurement of the characteristic frequencies of the quasi-normal modes will also help
to distinguish these solutions from their GR analogues [33]. Finally, the detection of gravitational
waves from black-hole or neutron-star mergers may also help to impose bounds on the parameters
of the theory provided that the scalar charge is significant and their physical distance is small.

Subsequently, we have attempted to find black-hole solutions in the presence of a cosmolog-
ical constant, either positive or negative, in the context of the same theory. Once again, we were
able to construct regular asymptotic solutions that described a black-hole horizon at some small
radial distance and either a cosmological horizon or an asymptotic Schwarzschild-Anti-de Sitter
spacetime at large distances for a positive or negative Λ, respectively. However, we were able to
construct complete black-hole solutions only in the case of a negative cosmological constant, and
with the same easiness, for any form of the coupling function f (ϕ), as in the asymptotically-flat
case. Unfortunately, no black-hole solutions were found for the case of a positive cosmological
constant, a case that is of immediate relevance for our 4-dimensional universe. For some yet un-
determined reason, the presence of a positive cosmological constant destroys the synergy between
the Ricci scalar, the scalar field and the GB term that leads to the emergence of the black-hole
solutions.

The latter synergy was confirmed by the analysis that aimed at determining black-hole solu-
tions in the pure scalar-GB theory, i.e. in the absence of the Ricci scalar. Despite our persistent
efforts no such solutions were found. The failure to obtain the desired type of solutions clearly
demonstrates that the presence of the GB term in the theory is a necessary condition for the emer-
gence of novel black holes but not a sufficient one as it must be supplemented by the presence of
the linear Ricci term.
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