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1. Introduction

The target space geometry of (2,2) supersymmetric nonlinear sigma models was shown a
long time ago to be bi-hermitean, a generalisation of Kähler geomtery with torsion [2]. More
recently this geometry was reformulated as Generalised Kähler Geometry (GKG) [4], a class of
Generalised Complex Geometry [3]. The relation between bi-hermitean geometry and Generalised
Kähler Geometry is encoded in the Gualtieri map that relates the metric and two complex structures
of the bi-hermitan geometry to the two commuting Generalised Complex structures of GKG.

In this presentation we will discuss the extension of this to the target space geometry of (2,0)
supersymmetric nonlinear sigma models formulated in [5] and the geometry of (2,1) models for-
mulated in [6]. The geometry of general (p,q) models was given in [9] and further discussed in
[11], and recent progress includes [18] and [19]. The Strong Kähler with Torsion (SKT) geometry
of the (2,0) and (2,1) target spaces has a complex structure that is covariantly constant with respect
to a connection with a torsion given by a closed 3-form and a hermitian metric. We shall map these
onto an (integrable) “Half Generalised Complex Structure” [1].

The content of this lecture has been extended and formalised in a paper [1] to which the
interested reader is referred for more details, including the generalisation to (p,q) geometries.

2. Definitions

We shall consider GCG as defined on the generalised target space

T := TM ⊕T ∗M (2.1)

The natural pairing P defines a product <,> defined for1 ϕ1,ϕ2 ∈ T

< ϕ1,ϕ2 >= ϕ
t
1Pϕ2 . (2.2)

Writing

ϕ =

(
vi

ξi
,

)
(2.3)

with vi ∈ T and xi,∈ T∗, it follows that

< ϕ1,ϕ2 >= ξ1(v2)+ξ2(v1) (2.4)

defines a metric of signature (d,d).
We shall further assume the existence of a generalised metric which, in matrix notation, can

be arranged to read

G =

(
0 g−1

g 0

)
(2.5)

1See below for the matrix. notation
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corresponding to a metric splitting2 of T. Introducing the projection operators

π
g
± := 1

2 (1±G ) (2.6)

the splitting reads

T = T+⊕T− , (2.7)

with

T± := π
g
±T (2.8)

being the ±1 eigenspaces of T. The description of the SKT geometry will focus on the +1
eigenspace T+.

3. A (half) generalised complex structure on T+

A generalised almost complex structure J is an endomorphism of T which squares to minus
the identity and preserves the natural pairing P:

J 2 =−1

J tP =−PJ .

Here we consider instead a half generalised structure; a map J+ which acts on T+, vanishes on
T−, satisfying

J 2
+ =−π

g
+

[J+,G ] = 0

(πg
+)

tJ t
+PJ+π

g
+ = (πg

+)
tPπ

g
+ . (3.1)

Since J+π
g
− = 0, we write it as

J+ = J π
g
+ , (3.2)

where J is an almost complex structure on T as in (3.1). The second condition in (3.1) then
implies the generalised Hermiticity condition

[J ,G ] = 0 , (3.3)

and the first and third conditions in (3.1) then also hold.

2See [8] for the conditions for this to be possible in general.
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4. A coordinate description

To describe the geometry, it is sometimes convenient to choose a coordinate basis (∂/∂X µ ,dX µ)

for T and to write the elements of sections as

ϕ =

(
vµ

ξµ

)
(4.1)

We then have a matrix description of our operators as

J =

(
I P
L K

)
, π

g
+ = 1

2

(
1 g−1

g 1

)
, P = 1

2

(
0 1
1 0

)
(4.2)

where

I = (Iµ

ν) : TM → TM , P = (Pµν) : TM → T ∗M

L = (Lµν) : T ∗M → TM , K = (K ν
µ ) : T ∗M → T ∗M

g−1 = (gµν) : TM → T ∗M , g = (gµν) : T ∗M → TM . (4.3)

Using these, we find from (3.1) that J 2 =−1 implies

I2 +PL =−1

IP+PK = 0

LI +KL = 0

LP+K2 =−1 , (4.4)

and that J tP =−PJ implies

Pt +P = 0

Lt +L = 0

I +Kt = 0 . (4.5)

Finally, the condition (3.3) that [J ,G ] = 0 gives

Pg−g−1L = 0

Kg−gI = 0 . (4.6)

The conditions (4.4)-(4.6) may be summarised by saying that J may be written

J =

(
Î∓Pg P
gPg −Ît ±gP

)
(4.7)

where P is antisymmetric and Î is an almost complex structure on M that preserves the metric:

P =−Pt , Î := I±Pg , (Î)2 =−1 , (Î)tgÎ = g . (4.8)

It follows that the complex structure J+ on T+ is

J+ = J π
g
+ = π

g
+J π

g
+ = 1

2

(
Î −(ω̂)−1

ω̂ −Ît

)
(4.9)

where ω̂ := gÎ.
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5. Integrability

Using J+ from (4.9), we define another two projection operators

π
j
± := 1

2(1± iJ+) . (5.1)

This allows a further split

T+ = T(1,0)
+ ⊕T(0,1)

+ (5.2)

where

T(1,0)
+ = π

j
+T+ , T(0,1)

+ = π
j
−T+ (5.3)

are +i and −i eigenspaces, respectively. We then require T(1,0)
+ to be involutive with respect to the

H−twisted Courant bracket, which reads

Jϕ1,ϕ2KH

:=

(
[v1,v2]

Lv1dξ2− iv2dξ1 + iv1 iv2H

)
=

(
[v1,v2]

2iv[1dξ2] +d(iv1ξ2)+ iv1 iv2H

)
, (5.4)

with dH = 0. When ϕi ∈ T(1,0)
+ , they may be written

ϕi = π
j
+π

g
+ϕi , ⇐⇒ ϕi =

1
2

(
p+v̂i

gp+v̂i

)
. (5.5)

where

p+ := 1
2(1+ iÎ)

v̂i := vi +g−1
ξi (5.6)

The involution conditions translate into

π
g
−Jϕ1,ϕ2KH = 0 , ⇐⇒ < ϕ̃3,Jϕ1,ϕ2KH >= 0 , ϕ̃3 ∈ T− (5.7)

and

π
j
−Jϕ1,ϕ2KH = 0 ⇐⇒ < ϕ̃3,Jϕ1,ϕ2KH >= 0 , ϕ̃3 ∈ T(0,1)

+ (5.8)

to stay in T(1,0)
+ . (Note that [πg,π j] = 0). The first condition leads to J+ being parallel, the second

to the vanishing of the Nijenhuis tensor for I.
Letting p+v̂i =: wi, we learn from (5.7) that

[w1,w2]
µ −gµν

(
2iw[1d(gw)2] +d(iw1gw2)+ iw1 iw2H

)
ν = 0 . (5.9)

For ϕi ∈ T+ : ξi = gvi we have(
2iv[1d(gv)2] +d(iv1gv2)+ iv1 iv2H

)
µ

= gµκ [v1,v2]
κ +2v2ν∇

(+)
µ vν

1 (5.10)
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where ∇
(+)
µ is the covariant derivative with torsion

∇
(+)
µ vν

1 = ∇
(0)
µ vν

1 +
1
2 H ν

µρ vρ

1 , (5.11)

with ∇
(0)
µ the Levi-Civita connection for g. Using this in (5.7) yields

w2ν∇
(+)
µ wν

1 = 0 . (5.12)

Since p+gp+ = 0, we can peel off the v̂i s to conclude that

∇
(+)
µ Îτ

ν = 0 . (5.13)

On TM the complex structure Î is thus parallel with respect to this torsionful connection. From
(5.8) we find

(1
2 + p−)[w1,w2]+

i
2(ω̂)−1

(
2iw[1d(gw)2] +d(iw1gw2)+ iw1 iw2H

)
= 0 , (5.14)

− i
2 ω̂[w1,w2]+ (1

2 + pt
+)
(

2iw[1d(gw)2] +d(iw1gw2)+ iw1 iw2H
)
= 0 . (5.15)

From these and (5.9) it follows that

p−[w1,w2] = p−[p+v̂1, p+v̂2] = 0 ,

p−g−1
(

2iw[1d(gw)2] +d(iw1gw2)+ iw1 iw2H
)

(5.16)

= p−[w1,w2]+2p−igw2g−1
∇
(+)w1 = 0 . (5.17)

The first of these is the integrability condition for Î on M :

N (Î) = 0 , (5.18)

where N is the Nijenhuis tensor. The second relation follows from the first and (5.12).
From the vanishing of the Nijenhuistensor, (5.18) in conjunction with the parallel condition

(5.13), one derives the torsion relation

Tµνρ = Tστ[ρ Îσ
µ Îτ

ν ] , (5.19)

which is equivalent to the final condition

dc
ω̂ = H , (5.20)

for T = 1
2 H. Note tha H is closed by assumption which means that

ddc
ω̂ = 0 . (5.21)
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6. Generalised Kähler Geometry

Generalised Kähler Geometry (GKG) is the target space geometry of (2,2) sigma models. It
is determined by two complex structures Î(±), a metric g which is hermitian with respect to both of
these and a closed three form H which enters the conditions for integrability. The relation to GCG
is given by the Gualtieri map [4]

J (1,2) = 1
2

(
Î(+)± Î(−) −(ω−1

(+)∓ω
−1
(−))

ω(+)∓ω(−) −(Ît(+)± Ît(−))

)
(6.1)

where J (1) and J (2) are two commuting Generalised Complex Structures with integrability
defined with respect to the H-twisted Courant bracket (5.4). GKG has been extensively studied in
the context of sigma models [12]-[17], but here we just want to elucidate the relation to the half
generalised complex structures discussed above.

Half generalised complex structures can be defined on T− in the same way as described for
T+. Assume that J+ is defined on T+ and takes the form (4.9)

J+ = J π
g
+ = π

g
+J π

g
+ = 1

2

(
Î(+) −(ω̂(+))

−1

ω̂(+) −Î(+)t

)
, (6.2)

and J− is defined on T−

J− = J̃ π
g
− = π

g
−J̃ π

g
− = 1

2

(
Î(−) −(ω̂(−))

−1

ω̂(−) −Î(−)t

)
, (6.3)

both integrable with respect to the same H-twisted Courant bracket. Their sum and difference then
yield precisely (6.1)

J (1,2) = π
g
+J π

g
+±π

g
−J̃ π

g
− . (6.4)

At the sigma model level this is mirrored by the fact that a (2,2) model can be thought of as the
sum of a (2,0) and a (0,2) model.

7. Conclusions

We have briefly described how SKT geometry fits into Generalised Complex Geometry as half
generalised structures, related it to (2,0) and (2,1) sigma model target space geometry and shown
how two half generalised complex structures can give rise to the Generalised Kähler Geometry of
(2,2) sigma models. These considerations generalise to (p,q) supersymmetric models and their
target space geometries as shown in [1].
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[13] U. Lindström, M. Roček, R. von Unge and M. Zabzine, “Generalized Kähler manifolds and off-shell
supersymmetry,” Commun. Math. Phys. 269 (2007) 833 [hep-th/0512164].
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