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1. Introduction

T-duality is a peculiar feature of strings, since it is inherently linked to their extended nature
and, therefore, cannot subsist for point particles. It originally emerges out of compactifying the
target space along some directions. Indeed, the one-dimensionality of a string allows it to wrap
around non-contractible cycles, resulting in winding mode contributions to its dynamics in addition
to the ones of momentum modes familiar from particle dynamics, quantized in integer units. T-
duality relates these two kinds of modes. It implies that, in many cases, two different geometries
for the extra dimensions are physically equivalent, i.e. string physics at a very small scale cannot be
distinguished from the one at a large scale, as it is shown in the simplest case of compactification
of a spatial coordinate on a circle of radius R. Here, T-duality is encoded by the simultaneous
transformations of R↔ α ′

R and pa↔ wa, where pa is the quantized momentum of the string and wa

is its winding mode. Under such transformations, the string coordinate along a compact dimension
Xa, sum of the left and right movers, is transformed into the T-dual coordinate X̃a, defined by
their difference. The winding mode wa plays with respect to X̃a the same role as pa does with
respect to the coordinate Xa. This leads to a duality between two different target spaces with the
string theories defined on them resulting to be equivalent, as can be seen from the mass spectrum
analysis. More generally, T-duality allows to build new string backgrounds which could not be
addressed otherwise and generally go under the name of non-geometric backgrounds (see e.g. [1]
for a recent review on the subject). Furthermore, together with S-duality and U-duality, it lies at the
heart of relating the five different superstring theories that turn out to be seen as low-energy limits
of the so-called M-theory.

On a d-dimensional torus T-duality is described by an O(d,d;Z) transformation that is a sym-
metry of the Hamiltonian but not of the action of the theory. This is actually reminiscent of a more
general symmetry.

Indeed, one can observe that, already at the classical level, the symmetry under the indefinite
orthogonal group O(D,D;R) - in the following we will refer to it as O(D,D) - naturally appears
in the Hamiltonian description of the bosonic string in a D-dimensional pseudo-Riemannian target
space M with constant background (G,B), being G the target space metric and B the Kalb-Ramond
field. Such string is described by the well-known two-dimensional non-linear sigma model action:

S[X ;G,B] =− 1
4πα ′

∫
Σ

dτ dσ

[
hαβ

∂αXa
∂β XbGab + ε

αβ
∂αXa

∂β XbBab

]
≡
∫

Σ

dτ dσL (1.1)

where the two-dimensional world-sheet Σ (α,β = 0,1), with metric h = diag(−1,1) in the confor-
mal gauge, is embedded into M (a,b = 0, . . . ,D−1). The convention ε01 =−ε10 =−1 is adopted
from now on.

The Hamiltonian density H can be derived from the Lagrangian density L in eq. (1.1) by a
Legendre transformation with respect to ∂0Xa. The canonical momentum Pa is given by:

Pa ≡
∂L

∂∂0Xa =
1

2πα ′

(
Gab∂0Xb +Bab∂1Xb

)
(1.2)

with inverse
∂0Xa = 2πα

′(G−1)abPb− (G−1)acBcb∂1Xb (1.3)
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The result is:

H ≡ P ·∂0X−L (1.4)

=
1

4πα ′
(∂0X ·∂0X +∂1X ·∂1X) |(∂0X)(P)

which, by means of eq. (1.3), yields

H =
1

4πα ′

(
∂1X

2πα ′P

)T

H (G,B)

(
∂1X

2πα ′P

)
(1.5)

and the so-called generalized metric

H (G,B) =

(
G−BG−1B BG−1

−G−1B G−1

)
(1.6)

has been introduced.
Hence, H in eq. (1.5) is proportional to the squared length of the following 2D-dimensional

generalized vector field Ap ∈ T M⊕T ∗M:

AP(X)≡ ∂1Xa
∂a +2πα

′PadXa (1.7)

as measured by the generalized metric, i.e. H = 1
4πα ′ A

T
P H AP.

The Hamiltonian density H in eq. (1.5) results to be invariant under the exchange ∂1X ↔
2πα ′P in eq. (1.5), realized by the transformation

AP→ ÃP = ηAP (1.8)

involving the O(D,D)-invariant metric:

η =

(
0 1
1 0

)
(1.9)

if also the metric and the Kalb-Ramond field are transformed according to the transformation of
H as:

H →H ′ = H −1 = η H η . (1.10)

Actually, it is easy to check that the invariance of H under AP → T AP holds for any element
T ∈O(D,D) provided H is replaced by H → H̃ = (T −1)tH T −1. Let us remind that a D×D
matrix T is an element of O(D,D) if and only if:

T t
η T = η , (1.11)

i.e. if it leaves the matrix η invariant. This definition implies that the O(D,D) invariant metric by
itself and the generalized metric H are elements of O(D,D).

Alternatively, one can get the O(D,D) invariance of H also through the following consider-
ations [2]. In terms of the generalized vector AP, the constraints coming from the vanishing of
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the two-dimensional energy-momentum tensor Tαβ = 0. i.e. from the equation of motion of the
world-sheet metric h

Gab (∂0Xa
∂0Xb +∂1Xa

∂1Xb) = 0

Gab ∂0Xa
∂1Xb = 0 (1.12)

can be respectively rewritten as:

AT
P H AP = 0 ; AT

P η AP = 0. (1.13)

The first constraint sets the Hamiltonian density to zero, while the second one completely deter-
mines the string dynamics. All the admissible generalized vectors satisfying the second constraint
are related by an O(D,D) transformation via ÃP = T AP. In order to satisfy also the first con-
straint, a compensating O(D,D) transformation T −1 : H → (T −1)tH T −1 has to be applied to
the generalized metric H .

In the presence of constant background (G,B) along d directions labelled by a,b = (1, . . . ,d)
or, equivalently, in the presence of d toroidally compactifed dimensions, the equations of motion
for the string coordinates represent a set of conservation laws of currents, locally defined on the
world-sheet [3]:

∂αJα
a = 0, (1.14)

with
Jα

a = hαβ Gab∂β Xb + ε
αβ Bab∂β Xb . (1.15)

Eq. (1.15) provides the following definition of the dual coordinate of Xa, denoted by X̃a :

Jα
a ≡ ε

αβ
∂β X̃a . (1.16)

By comparing the transformed metric H̃ ≡H −1 with H we may re-interpret its entries in terms
of new fields (G̃, B̃) whose expression in terms of the previous ones can be easily read off. Thus,
the initial Polyakov action S defines a dual action S̃ which is a functional of the constant dual
(G̃, B̃)-background. The relations:

G̃ =
(
G−BG−1B

)−1
, B̃ =−G−1BG̃ (1.17)

are the so called Buscher rules [4, 5]. Since S and S̃ describe the evolution of the same string theory,
they are dual to each other.

In terms of the generalized vector

χ ≡

(
X
X̃

)
(1.18)

the equations of motion for X and their dual analogues have been shown in ref.s [6, 7] to be recast
into a single O(d,d)-invariant equation:

H ∂α χ = η εαβ ∂
β

χ (1.19)

involving both the generalized metric H and the O(d,d)-invariant metric η previously defined.
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In particular, if the closed string coordinates are defined on a d-dimensional torus T d , the dual
coordinates will satisfy the same periodicity conditions and then O(d,d)→O(d,d;Z) becomes an
exact symmetry: it constitutes what is called Abelian T-duality [9] [10].

This has suggested since long [6, 7, 11, 12, 13, 16] to look for a manifestly T-dual invariant
formulation of string theory that has to be based on a doubling of the string coordinates in the target
space, since it requires the introduction of both the coordinates Xa and the dual ones X̃a. The main
goal of this new action would be to explore more closely aspects of string geometry, hence of string
gravity.

From a manifestly T-dual invariant two-dimensional string world-sheet, Double Field Theory
(DFT) [17] should emerge out as a low-energy limit. DFT developed as a way to encompass the
Abelian T-duality in field theory and Doubled Geometry underlies it. In DFT, diffeomorphisms rely
on an O(d,d) structure defined on the tangent space of a doubled torus T 2d . A section condition
has then to be imposed for halving the 2d coordinates. There is a vast literature concerning DFT
[18-33] including topological aspects and its description on group manifolds.

Abelian T-duality requires the two dual target spaces to have Abelian isometry groups, but
starting from the work in ref. [34], it was clear that a non-Abelian generalization is possible, where
one of the two isometry groups is non-Abelian. Recently, a further generalization has attracted
growing interest, which is the so-called Poisson-Lie T-duality [35, 36, 37, 38, 39]. Differently from
the other two types, this latter does not require the presence of isometry groups. There are many
reasons to consider this more general duality: at the classical level, a lot of models are concerned
with T-duality without isometry and at the quantum level there arise possibilities of existence of
non-trivial discrete symmetries relating a weak coupling regime of one quantum field theory to
the strong coupling regime of the dual theory. Last but not least, it has paved the way to new
perspectives in string theory in non-geometric backgrounds [40, 41].

In particular, Poisson-Lie T-duality relies on the concept of Drinfel’d double [42]. As already
remarked, the standard Abelian T-duality refers to the presence of Abelian isometries U(1)d in both
the dual sigma models and they can be composed into U(1)2d that provides the simplest example
of a Drinfel’d Double, i.e. a Lie group D whose Lie algebra d can be decomposed into a pair of
maximally isotropic subalgebras with respect to a non-degenerate invariant bilinear form on d. We
review the basic aspects of Drinfel’d doubles and its relation to T-dualities in Sect. 2.

A classification of T-dualities can be given according to the types of underlying Drinfel’d
doubles [35, 36]:

• Abelian doubles correspond to the standard Abelian T-duality. The Drinfel’d double is
Abelian, with Lie algebra given by the direct sum d= g ⊕ g̃ of the Abelian algebra g and its
dual;

• semi-Abelian doubles (d= g⊕̇ g̃ with g̃ Abelian and ⊕̇ indicating the semi-direct sum) corre-
spond to non-Abelian T-duality or, equivalently, they correspond to the standard non-Abelian
T-duality between a σ -model with a G-target, isometric with respect to the Lie group G hav-
ing g as its Lie algebra, and a non-isometric σ -model with the target g̃ viewed as the Abelian
group;
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• non-Abelian doubles (all the others) correspond to Poisson-Lie T-duality where no isometries
hold for either of the two dual models.

The Double Field Theory framework has also been considered in connection with Generalized
Geometry (GG) [43, 44, 45], which has consequently arisen as a mean to geometrize duality sym-
metries. GG is based on replacing the tangent bundle T M of a manifold M with a kind of Whitney
sum T M⊕T ∗M, a bundle with the same base space but fibers given by the direct sum of tangent
and cotangent spaces, and the Lie brackets on the sections of T M by the so-called Courant brack-
ets, involving vector fields and one-forms. The Courant bracket of two sections of T M⊕T ∗M is
defined as

[X +ξ ,Y +η ] = [X ,Y ]+LX η−LY ξ − 1
2

d (iX η− iY ξ ) , (1.20)

where X ,Y are tangent vectors and ξ ,η cotangent vectors, such that X +ξ and Y +η are elements
of the fibers T ⊕T ∗. The important point of such bracket is that it commutes with the action of a
closed 2-form B [44]. Furthermore, it is easy to note that both this bracket and the inner product
naturally defined on the generalized bundle (x+ ξ ,X + ξ ) = iX ξ are invariant under diffeomor-
phisms of the underlying manifold M. This, together with the fact that a global closed 2-form B
will also preserve both the inner product and Courant bracket, means an overall action of the semi-
direct product of diffeomorphisms and closed 2-forms. This formal setting has attracted interest
in relation to DFT because it takes into account in a unified fashion vector fields, which generate
diffeomorphisms for the Gi j field, and one-forms, generating diffeomorphisms for the the Bi j field.

Therefore, it seems relevant to analyze more deeply the geometrical structure of (Abelian, non-
Abelian, Poisson-Lie) T-dualities and their relations with Generalized Geometry and/or Doubled
Geometry.

In this work we review the results presented in [46], where a simple mechanical system has
been considered: the three-dimensional isotropic rigid rotator (IRR), thought of as a (0+ 1)-field
theory.

A remarkable property of this model is that its dynamics exhibits Poisson-Lie symmetries
[47, 48] when described in the Hamiltonian approach, by replacing the cotangent space of SU(2)
with the group SL(2,C) which plays the role of the alternative phase space of the model. The result
is consistent with the two spaces, T ∗SU(2) and SL(2,C), being symplectomorphic [48]. Let us
remark here that the concept of Poisson-Lie symmetry, which concerns a single dynamical model,
can be stated independently and it is indeed a pre-requisite for Poisson-Lie duality, which requires
instead two dynamical systems with different carrier spaces to be formulated.
With this distinction in mind, in [46] the IRR model was considered under yet another point of
view, the goal being to introduce a model on the dual group of SU(2), with the aim of exhibiting a
Poisson-Lie dual system, according to the definition given above.
It turned out that the model on the dual group doesn’t describe the same dynamics, though paving
the way to a field theory generalization of the whole construction, which describes the Principal
Chiral Model of SU(2) and its dual partner as Poisson-Lie duals [56]. The IRR is thus to be con-
ceived as a toy model, where the key features of Poisson-Lie symmetries and Poisson-Lie duality
can be clearly understood, although it should be stressed that its dynamics is not invariant under
such transformations.

5
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After defining the dual model, a parent action on the Drinfel’d double of SU(2) is introduced,
containing a number of degrees of freedom which is doubled with respect to the original one and
from which both this latter and its dual can be recovered by a suitable gauging. The geometric
structures that appear can then be understood in terms of Generalized Geometry and/or Doubled
Geometry.

2. Drinfel’d Doubles and Poisson-Lie T-Duality

In this section we shortly review the mathematical setting of Drinfel’d doubles and Poisson-
Lie T-duality, with particular focus on sl(2,C) as a double Lie algebra, which is needed in order to
explore the relation between Drinfel’d doubles, Double Geometry and Generalized Geometry by
introducing a new formulation of the IRR on sl(2,C) with manifest symmetry under duality. More
information on these topics can be found in ref.s [1, 36, 46, 49, 50], which are going to be closely
followed in this section.

2.1 Drinfel’d double structure of sl(2,C)

A Drinfel’d double D is an even-dimensional Lie group whose Lie algebra d can be decom-
posed into a pair of maximally isotropic subalgebras, g and g̃, with respect to a non-degenerate
invariant bilinear form on d. About the terminology, for a subspace to be isotropic it means that
the bilinear pairing of any two of its elements vanishes, while maximal refers to the fact that such
subspace cannot be enlarged preserving the isotropy condition.

The associated Lie algebra is denoted by d= g ./ g̃ emphasizing the symmetric construction,
and Lie brackets are given by

[Ti,Tj] = fi j
kTk ; [T̃ i, T̃ j] = gi j

kT̃ k ; [Ti, T̃ j] = fki
jT̃ k−gk j

iTk, (2.1)

being Ti and T̃ i, with i = 1,2, . . . ,d, respectively the generators of g and g̃, both d-dimensional. Let
us notice that these Lie brackets emerge in the description of the gauge algebra of string compacti-
fication on a Poisson-Lie background [51].

The two Lie subalgebras, when taken together, define a Lie bialgebra (g, g̃) and generate re-
spectively the two Lie subgroups G and G̃, such that D = G ./ G̃ (with an abuse of notation we
use the same symbol for the algebra and group composition). In this picture it is clear what dual
means: G and G̃ are dual Lie groups in the sense that they are dual partners with respect to this
decomposition. Note that since the role of the two subalgebras can be intercharged, (g̃,g) is a Lie
bialgebra as well. By construction, also d̃ is a Lie bialgebra, and in particular (d, d̃) is called the
double of (g, g̃) [52].

In general, a particular splitting of the Drinfel’d double in terms of maximally isotropic sub-
spaces is called a polarization, and when the subspaces involved in the polarization close as sub-
algebras, the triple (d,g, g̃) is called a Manin triple [42, 53, 54]. In this particular case, a natural
O(d,d) structure appears as duality pairing between the two subalgebras. In fact, the duality pair-
ing between g and g̃ with respect to which the isotropy follows is an invariant O(d,d) metric η

with:
η (Ti,Tj) = 0, η

(
T̃ i, T̃ j)= 0, (2.2)

6
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and
η
(
Ti, T̃ j)= δ

j
i , η

(
T̃ i,Tj

)
= δ

i
j. (2.3)

The set of polarizations corresponding to a given Drinfel’d double plays the role of the modular
space of sigma models which, when related to Manin triples, are mutually connected by Poisson-
Lie T-duality. In the Abelian case the Drinfel’d double is U(1)2d and its modular space is nothing
but O(d,d,Z). Because of the symmetric construction and the symmetric role of the two subgroups,
the modular space in question has always at least two points, originating from G/G̃ and the quotient
obtained exchanging the groups [36]. Furthermore, it can be shown that a para-Hermitian structure
can be defined on D, induced by the Manin triple polarization d= g ./ g̃ [46, 49].

For the purpose of this work, we will focus on the Drinfel’d double structure of d= sl(2,C).
It is known that the Lie algebra sl(2,C) can be regarded as a real form of the complex Lie

algebra sl(2). Indeed, sl(2) is defined by the Lie brackets

[t1, t2] = t3 ; [t2, t3] = 2t2 ; [t3, t1] = 2t1, (2.4)

being

t1 =

(
0 1
0 0

)
; t2 =

(
0 0
1 0

)
; t3 =

(
1 0
0 −1

)
(2.5)

its generators. However, by taking complex linear combinations of the sl(2) generators given by

e1 =
1
2
(t1 + t2) =

σ1

2
, e2 =

i
2
(t2− t1) =

σ2

2
, e3 =

1
2

t3 =
σ3

2
, (2.6)

bi = iei, i = 1,2,3 (2.7)

the real algebra sl(2,C) is recovered with its Lie brackets

[ei,e j] = iεi j
kek ; [ei,b j] = iεi j

kbk , ; [bi,b j] =−iεi j
kek. (2.8)

From (2.8) it is clear that the ei’s are the generators of the su(2) subalgebra.
One can also consider the dual vector space su(2)∗ by introducing a basis of vectors {ẽ j} dual

to {ei} in (2.6):
ẽi = δ

i j
(

b j + ε
k

j3 ek

)
. (2.9)

This is indeed dual with respect to the natural scalar product (the Killing-Cartan form) defined in
sl(2,C) as

〈v,w〉= 2Im [Tr(vw)] , ∀v,w,∈ sl(2,C), (2.10)

as can be easily seen by showing that

〈ẽi,e j〉= 2Im
[
Tr(ẽie j)

]
= δ

i
j. (2.11)

The dual vector space su(2)∗ is in turn the Lie algebra sb(2,C), with the following brackets:

[ẽi, ẽ j] = i f i j
kẽk, (2.12)

with sb(2,C) structure constants f i j
k = ε i jlεl3k.

7
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Furthermore, the Lie bracket

[ẽi,e j] = iε i
jkẽk + i f ki

jek (2.13)

shows that each subalgebra acts on the other one non-trivially, by co-adjoint action.
It is important to note that both su(2) and sb(2,C) are maximally isotropic with respect to the

scalar product (2.10):
〈ei,e j〉= 0, 〈ẽi, ẽ j〉= 0, (2.14)

therefore, (sl(2,C),su(2),sb(2,C)) is a Manin triple with respect to it, and sl(2,C) can be under-
stood as a Drinfel’d double with polarization sl(2,C) = su(2) ./ sb(2,C). SU(2) and SB(2,C) are
then dual groups, in the sense that they are dual partners with respect to this particular splitting.
Observe that the Lie brackets of (2.8) (for the ei), (2.12) and (2.13) have exactly the form as (2.1).

There is also another non-degenerate invariant scalar product which can be defined on sl(2,C)
as:

(v,w) = 2Re [Tr(vw)] , ∀v,w ∈ sl(2,C). (2.15)

su(2) and sb(2,C) are no longer isotropic subspaces with respect to this scalar product, in fact, for
the basis elements:

(ei,e j) = δi j, (bi,b j) =−δi j, (ei,b j) = 0. (2.16)

Note that this does not give rise to a positive-definite metric. However, on denoting by C+, C−
respectively the two subspaces spanned by {ei} and {bi}, the splitting sl(2,C) =C+⊕C− (which
is not a Manin triple polarization) defines a positive definite metric H on sl(2,C) as follows:

H = (,)C+
− (,)C− . (2.17)

This is a Riemannian metric and we denote it with the symbol (( , )). In particular:

((ei,e j))≡ (ei,e j) , ((bi,b j))≡−(bi,b j) , ((ei,b j))≡ (ei,b j) = 0. (2.18)

In Sect. 5 we will see that in doubled notation eI =

(
ei

ẽi

)
, with ei ∈ su(2) and ẽi ∈ sb(2,C), the

scalar product in (2.10) defines precisely the O(d,d) (in this case d = 3) invariant metric while the
Riemannian scalar product in (2.18) defines a pseudo-orthogonal O(d,d) matrix that will corre-
spond to the generalized metric.

As a further interesting remark, the Riemannian structure H can be mathematically formal-
ized in a way which clarifies its role in connection with Generalized Geometry [45][55]: it can
be related to the structure of para-Hermitian manifold of SL(2,C) and therefore generalized to
even-dimensional real manifolds which are not Lie groups.

2.2 Poisson-Lie T-duality

As announced in the introduction, in order to formulate the invariance under Poisson-Lie T-
duality as a generalization of Abelian and semi-Abelian T-dualities, we need to state the concept
of Poisson-Lie symmetry.

Definition 1 A coordinate transformation associated to the Lie group G is a symmetry of the
dynamics if it leaves the equations of motion unchanged in form.

8
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If it is also a symmetry for the auxiliary geometric structures which are relevant to the cho-
sen formulation (symplectic form, Poisson brackets and Hamiltonian in the Hamiltonian approach,
functional action and Lagrangian in the Lagrangian approach), namely an isometry, then the sym-
metry yields constants of motion, which are associated to conserved Nöther currents.

Definition 2 If a given symmetry of the dynamics under the Lie group G is not a symmetry
for the auxiliary geometric structures, that is not an isometry, but the violation is governed by the
Maurer-Cartan structure equation of the Drinfel’d dual group G̃ associated to the group G, the
symmetry of the dynamics is a Poisson-Lie symmetry.

Let us be more specific. To be definite, let us choose the Hamiltonian approach. Let us
assume that the dynamics of the system under consideration is invariant with respect the action of a
given Lie group G, namely, Hamilton equations of motion are unchanged. These are, for a certain
observable f (q, p), the following:

ḟ = Λ(d f ,dH) (2.19)

with Λ the Poisson tensor and H the Hamiltonian. They are certainly invariant under a given
Lie group action with infinitesimal generator Xa if both Λ (or the symplectic form ω), and H are
invariant

LXaΛ = 0, LXaω = 0; LXaH = 0 (2.20)

or, in other words, we have conserved quantities defined by

iXaω = dha (2.21)

but this is only a sufficient condition. In order for the dynamics to be invariant we might modify
both the Poisson brackets and the Hamiltonian in such a way that their Lie derivative is non-zero,
but the eq. (2.19) does not change. In terms of the symplectic form this implies that θ a = iXaω is
not an exact form anymore, namely dθ a 6= 0 and it does not define a constant of motion. If θ a is
such that

dθ
a =−1

2
f̃ a

bcθ
b∧θ

c (2.22)

with f̃ a
bc structure constants of a Lie group G̃, which can be determined algebraically by requiring

the product G ./ G̃ to be the Drinfel’d double of G, the symmetry of the dynamics under the action
of G is a Poisson-Lie symmetry and the one-forms associated to the infinitesimal generators of the
G symmetry through the symplectic form are Maurer-Cartan one-forms of the dual group G̃.

Once a Poisson-Lie symmetry is found for a given dynamical model, under the action of a Lie
group G, one can construct a model with a different target space, which is acted on by the dual
group G̃. If this model possesses a Poisson-Lie symmetry as well, namely the one forms associated
to the infinitesimal generators of G̃ through its symplectic form ω̃ are Maurer-Cartan one-forms
for G, the two models are dual to each other and the symmetry under duality is what is called an
invariance under Poisson-Lie duality.

In order to understand this picture on an interesting model, and reconnect to definitions com-
monly used in the literature, which mainly rely on the Lagrangian approach, let us consider the
bosonic string sigma model in a target space M with (G,B) background.

We demand the target space to admit a free action of a Lie group G from the right. The action
of the theory in eq. (1.1) can be rewritten by introducing complex coordinates z and z̄ on the
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world-sheet, in a convenient form as:

S =
1

4πα ′

∫
dzdz̄Ei j∂X i

∂̄X j, (2.23)

with Ei j = Gi j +Bi j a matrix combining the metric tensor on the target space and the antisymmetric
Kalb-Ramond B field. By varying the action with respect to the coordinates, with δXa = V a

bδεb,
V a

b the left-invariant vector fields on M and εb infinitesimal parameters of the transformation, one
gets the Noether currents:

Ja =V i
a
(
Ei j∂̄X jdz̄−E ji∂X jdz

)
. (2.24)

This can be proved performing explicitly the variation of the action, obtaining:

4πα
′
δS =

∫
dzdz̄LVa(Ei j)∂X i

∂̄X j
ε

a−
∫

dzdz̄
[
∂ (V i

aEi j∂̄X j)+ ∂̄ (V i
aE ji∂X j)

]
ε

a, (2.25)

where LVa denotes the Lie derivative along the vector field Va, and realizing that

dzdz̄
[
∂ (V i

aEi j∂̄X j)+ ∂̄ (V i
aE ji∂X j)

]
= d

(
V i

aEi j∂̄X jdz̄−V i
aE ji∂X jdz

)
, (2.26)

so we have
4πα

′
δS =

∫
dzdz̄LVa(Ei j)∂X i

∂̄X j
ε

a−
∫

dJa ε
a. (2.27)

In the standard T-duality approach, one would have the current one-forms Ja to be closed,
which follows from the requirement that the Lie derivative along V acting on G and B vanishes,
namely, besides an invariance of the dynamics, we have also an invariance of the geometric struc-
tures. Therefore, the left-invariant vector fields Va have to be Killing vectors, and T-duality is along
a direction of isometry. This is the standard picture where isometry is the founding ingredient.
However, if we are in the presence of a symmetry of the dynamics which is not an isometry, but the
currents obey the following on-shell integrability condition (the Maurer-Cartan equation advocated
above)

dJa−
1
2

f̃ bc
a Jb∧ Jc = 0, (2.28)

with f̃ bc
a structure constants of a certain Lie algebra, the Va’s do not correspond to isometries. This

can also be seen by using both the integrability condition and the fact that on-shell the variation of
the action vanishes: ∫

dzdz̄LVa(Ei j)∂X i
∂̄X j

ε
a =

∫ 1
2

f̃ bc
a Jb∧ Jc ε

a. (2.29)

It is straightforward to obtain

Jb∧ Jc =−2V m
b V l

c EnmElk∂Xn
∂̄Xkdzdz̄, (2.30)

and putting this in eq.( 2.29), one has:

LVaEi j =− f̃ bc
a V k

b V l
c EikEl j. (2.31)

If the currents are not closed but satisfy the integrability condition, it turns out that f̃ bc
a are

the structure constants of the Lie algebra g̃ corresponding to the dual Lie group G̃ (in the sense

10
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of Drinfel’d) and the theory is said to have a Poisson-Lie symmetry. Hence, in order to formu-
late Poisson-Lie T-duality, in contrast to the Abelian and non-Abelian versions, isometries are not
required. It is a more general version since the two latter versions are particular cases. In fact,
if isometries are present, the dual Lie group is Abelian and dJa = 0, which is a particular case
of (2.28). Therefore, we understand that, formally, (2.28) is the Maurer-Cartan equation for the
current one-forms on the dual group g̃.

Being Va the left-invariant vector fields on the Lie group G, by using the commutators of the
Lie derivatives along these fields, the Lie algebra g of G can be recovered:

[LVa ,LVb ] = L fba
cVc . (2.32)

By combining the expression for the variation of Eab along the left-invariant vector fields (2.31)
with the commutation relations (2.32), a compatibility relation between the structure constants of
the two Lie algebras is obtained:

fae
c f̃ ed

b + fae
d f̃ ce

b − fbe
c f̃ ed

a − fbe
d f̃ ce

a = fab
e f̃ cd

e , (2.33)

which, considering g̃ as the dual vector space of g, is the Lie bialgebra structure. It is possible
to show that this compatibility relation requires these two algebras to be the maximally isotropic
subalgebras of a Drinfel’d double d= g ./ g̃ with respect to a bilinear invariant pairing such as (2.2),
(2.3). This is the reason why Drinfel’d doubles are the main objects in Poisson-Lie T-dualities.

Following the approach described above, in order to obtain Poisson-Lie T-dual models, one
has to investigate the possibility of building a model on a target space which is acted upon by the
group G̃ and study its symmetries. This is precisely the purpose of studying the IRR model and its
dual partner on the Lie group SB(2C).

3. The Isotropic Rigid Rotator

In this section, following [46], we consider an explicit and simple model: the three-dimensional
isotropic rigid rotator, considered as a (0+ 1)-dimensional SU(2) valued field theory. The model
is simple but nonetheless it can give precious information, especially in view of its direct true field
theory generalization that is the principal chiral model, analysed in [56] having this simple model
as a guide. This is not the only generalization whose dynamics can be captured by the rotator, such
as the Wess-Zumino-Witten model (whose results are going to be detailed in a forthcoming paper
[57] or (2+1)-dimensional gravity in its first order formulation [58] among many others.

A suitable action for the IRR model is the following

S0 =
∫
R

dt L0 =−
1
4

∫
R

Tr
[
ϕ
∗ (g−1dg

)
∧∗ϕ∗

(
g−1dg

)]
=−1

4

∫
R

dt Tr
(
g−1ġ

)2
, (3.1)

with ϕ : t ∈ R→ g ∈ SU(2), ∗ the Hodge star operator on R, defined such that ∗dt = 1 and ϕ∗

denotes the pull-back map, so that ϕ∗
(
g−1dg

)
= g−1∂tgdt defines the pull-back of the Maurer-

Cartan left-invariant one-form g−1dg on R.
In particular, being g−1dg ∈ Ω1⊗ su(2): g−1dg = iαkσk, with σk the Pauli matrices and αk basic
left-invariant one-forms. Here Ω1 denotes the space of one-forms on the group manifold.

11
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The group manifold SU(2) can be parametrized by the embedding in the ambient space R4 as
follows:

g = 2
(
y0e0 + iyiei

)
, g ∈ SU(2), (3.2)

with
(
y0
)2

+∑i
(
yi
)2

= 1, e0 = I/2, ei = σi/2.
One has then:

y0 = 〈e0|g〉= Tr(ge0) ,yi = 〈ei|g〉=−iTr(gei) , i = 1,2,3. (3.3)

On SU(2) we have g−1 = g†, so that

g−1ġ =
(
y0I− iyi

σi
)(

ẏ0I+ iẏ j
σ j
)
= y0ẏ0I+ iy0ẏi

σi− iyiẏ0
σi + yiẏ j

σiσ j (3.4)

= i
(

y0ẏi− yiẏ0 + ε
i
jky jẏk

)
σi +

(
y0ẏ0 + yiẏi) , (3.5)

where we used the well known relation σiσ j = δi jI+ iε k
i j σk. Moreover, the last term appearing in

the above equation is vanishing since
(
y0ẏ0 + yiẏi

)
= 1

2
d
dt

((
y0
)2

+∑i
(
yi
)2
)
= 0.

This leads to
g−1ġ = i

(
y0ẏi− yiẏ0 + ε

i
jky jẏk

)
σi = iQ̇i

σi, (3.6)

defining the left generalized velocities Q̇i ≡
(

y0ẏi− yiẏ0 + ε i
jky jẏk

)
, which allow us to write the

Lagrangian as L0 =
1
2 Q̇iQ̇ jδi j. This can be seen as follows:

L0 =−
1
4

Tr
(
g−1ġ

)2
=−1

4
Tr
[(

iQ̇i
σi
)(

iQ̇ j
σ j
)]

=
1
4

Tr
[
Q̇iQ̇ j

(
δi jI+ iε k

i j σk

)]
, (3.7)

using the fact that the σ matrices are traceless.
The Euler-Lagrangian equation of motion can be written in its intrinsic formulation [59], es-

pecially relevant for non-invariant Lagrangians 1, as:

LΓθL−dL0 = 0, (3.8)

being LΓ the Lie derivative along the Γ = d
dt vector field and θL the Lagrangian one-form, which

is given by θL = ∂L
∂ Q̇ j α

j = 1
2 Q̇iα jδi j.

By projecting along the basic left-invariant vector fields Xi (dual to the basic left-invariant
one-forms α i), one obtains:

iXi (LΓθL−dL0) = 0, (3.9)

where iXi is the notation for the interior derivative along the vector field Xi. Since LΓ and iXi

commute over the Lagrangian one-form 2, one gets:

LΓ

(
1
2

Q̇ jiXiα
l
)

δ jl−LXiL0 = 0, (3.10)

where we have used the fact that iX d f = LX f for f a function. Since iXiα
l = δ l

i and LXiL0 =
1
2 Q̇pQ̇qε k

ip δqk, we are left with the equation of motion

LΓQ̇ j
δ ji− Q̇pQ̇q

ε
k

ip δqk = 0, (3.11)
1This is not the case, but it will be useful for the dual model which we will show to have non-invariant Lagrangian.
2This is general: iXL = iX (iX d +d iX ) = iX d iX since iX is 2-nilpotent, while L iX = (iX d +d iX ) iX = iX d iX .
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but the latter term is vanishing because it is the contraction of a symmetric and of an antisymmetric
tensor, hence

Q̈i = 0, i = 1,2,3. (3.12)

Left momenta can be calculated as usual as:

Ii =
∂L0

∂ Q̇i
= δi jQ̇ j, (3.13)

and cotangent bundle coordinates can then be chosen to be
(
Qi, Ii

)
.

The Legendre transform from T SU(2) to T ∗SU(2) yields the Hamiltonian function:

H0 =
[
IiQ̇i−L0

]
Q̇i=δ i jI j

= δ
i jIiI j−

1
2

δ
i jI jIkδ

lk
δil =

1
2

δ
i jIiI j. (3.14)

By introducing the dual basis
{

ei∗
}

in the cotangent space, such that 〈ei∗ |e j〉= δ i
j, one can consider

the form
I =−1

2
iIiei∗ . (3.15)

In the first order formulation the action results to be

S =
∫

θ −
∫

dtH0, (3.16)

where
θ = 〈I|g−1dg〉= 〈−1

2
iIiei∗ |2iαkek〉= Iiα

k
δ

i
k (3.17)

is the canonical one-form, and reminding that the generators are defined as ei = σi/2. The sym-
plectic form can then be obtained as

ω = dθ = dIi∧δ
i
jα

j + Iiδ
i
jdα

j = dIi∧δ
i
jα

j + Iiδ
i
jε

j
lkα

l ∧α
k, (3.18)

where we also used the Maurer-Cartan equation dαk = εk
i jα

i∧α j. One can then calculate Poisson
brackets by inverting ω . The corresponding bi-vector field Λ will be written in terms of the basis
vector fields ∂I j ,X j respectively spanning the fibers and the base manifold of the cotangent bundle.
Using the fact that Xi

(
α j
)
= δ

j
i , ∂

∂ Ii
(dI j) = δ i

j, we have

ω
−1 = Λ = a j

i
∂

∂ Ii
∧X j +bi j

∂

∂ Ii
∧ ∂

∂ I j
+ ci jXi∧X j. (3.19)

By imposing the inverse condition one can easily see that a j
i = −δ

j
i , bi j = ε k

i j Ik and ci j = 0, so
that

{
yi,y j

}
= 0 and

{
Ii, I j

}
= ε k

i j Ik. In order to calculate the
{

yi, I j
}

bracket, one has to use the
expression of the left invariant vector fields in the chosen R4 parametrization. To this, by recalling
that α j = 1

2 Trg−1dgσ j = y0dy j− y jdy0 + ε
j

lk yldyk, and using the property Xi
(
α j
)
= δ

j
i we get:

X j = y0 ∂

∂y j − y j ∂

∂y0 + ε
k

l j yl ∂

∂yk . (3.20)

implying

{Il,ym}= Λ(dIl,dym) =−δ
j

i
∂ Il

∂ Ii
X j(ym) =−δ

j
i δ

i
l X j(ym), (3.21)
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but since:

X j(ym) = y0 ∂

∂y j ym− yi ∂

∂y0 ym + ε
s
p jy

p ∂

∂ys ym = y0
δ

m
j +δ

m
s ε

s
p jy

p, (3.22)

one gets:

{Il,ym}=−δ
j

i δ
i
l X j(ym) =−δ

j
i δ

i
l
(
y0

δ
m
j +δ

m
s ε

s
p jy

p)=−y0
δ

m
l − ε

m
p jy

p. (3.23)

From the Poisson brackets {
yi,y j} = 0 (3.24){
Ii, I j

}
= ε

k
i j Ik (3.25){

yi, I j
}
= δ

i
jy

0 + ε
i
jkyk↔

{
g, I j
}
= 2ige j, (3.26)

the Hamilton equations of motion can be derived:

İi = {Ii,H}= 0, (3.27)

ġ = {g,H}=−δ
i jIi
{

I j,g
}
= 2δ

i jIiige j, (3.28)

leading to
g−1ġ = 2iIiδ

i je j. (3.29)

These equations show that the fiber coordinates Ii, associated to the angular momentum compo-
nents, are constants of motion as expected, while g undergoes a uniform precession. In this case,
since the Lagrangian and the Hamiltonian are invariant under both left and right action of the
SU(2) group, also the right momenta can be seen to be conserved as well, making the model super-
integrable. This will not be the case for the dual model, as we show in Sect. 4.

The fibers of the tangent bundle T SU(2) are, as vector space, su(2) ' R3, being Q̇i vector
fields components. The fibers of the cotangent bundle T ∗SU(2) are isomorphic to the dual Lie
algebra su(2)∗. This, as a vector space, is again R3, but now Ii are one-form components.

The carrier space of the Hamiltonian dynamics T ∗SU(2) is represented, as a group, by the
semi-direct product of SU(2) and the Abelian group R3, i.e. T ∗SU(2) ' SU(2)nR3, with Lie
algebra

[Li,L j] = iεi j
kLk (3.30)

[Ti,Tj] = 0 (3.31)

[Li,Tj] = iεi j
kTk, (3.32)

being Li the generators of the SU(2) algebra and Ti the generators of R3, which behave as vectors
under SU(2) rotations as can be seen from the last relation. The linearization of the Poisson struc-
ture at the identity of SU(2) provides a Lie algebra structure over the dual algebra su(2)∗. Thus, the
brackets {Ii, I j}= εi j

kIk are induced by the coadjoint action of the group SU(2) on its dual algebra,
hence the Poisson brackets governing the dynamics of the IRR are the Kirillov-Souriau-Konstant
(KSK) brackets.

It has been shown in [47] that the carrier space of the dynamics of the IRR can be generalized
to the semisimple Lie group SL(2,C). This can be realized by deforming the Abelian subgroup R3

14
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into the non-Abelian group SB(2,C), which, we recall, is the Borel Lie subgroup of 2× 2 upper
triangular complex matrices with unit determinant. In particular, SU(2) and SB(2,C) constitute
the pair with respect to which SL(2,C) can be regarded as a Drinfel’d double. This means that the
triple (sl(2,C),su(2),sb(2,C)) is a Manin triple with respect to the scalar product 〈·, ·〉 in sl(2,C)
defined in (2.10), as we have discussed in Sect. 2. In the next section we discuss a new model,
which will be referred to as dual, in the sense that it is the analogue of the IRR but modeled on the
dual group SB(2,C).

4. The Dual Model

As carrier space for the dynamics of the dual model in the Lagrangian (respectively Hamilto-
nian) formulation one can choose the tangent (respectively cotangent) bundle of the group SB(2,C).
The latter is the dual Lie group of SU(2) because they are dual partners in a particular polarization
realization of SL(2,C) as a Drinfel’d double. A suitable action for the system is the following:

S̃0 =
∫
R

dt L̃0 =−
1
4

∫
R

T r[ϕ̃∗
(
g̃−1dg̃

)
∧∗ϕ̃∗

(
g̃−1dg̃

)
] =−1

4

∫
R

dt T r[(g̃−1 ˙̃g)(g̃−1 ˙̃g)] (4.1)

with ϕ̃ : t ∈ R→ g̃ ∈ SB(2,C), the group-valued target space coordinates, so that

g̃−1dg̃ = iα̃kẽk (4.2)

is the Maurer-Cartan left invariant one-form on the group manifold, with α̃k the left-invariant basic
one-forms, ∗ is again the Hodge star operator on the source space R satisfying ∗dt = 1. The symbol
T r is used here to represent a suitable scalar product in the Lie algebra sb(2,C). In this case the
group is not semi-simple, so there is no scalar product which is both non-degenerate and invariant.
Therefore, one has two possible different choices: the scalar product defined by the real and/or
imaginary part of the trace, given by (2.10) and (2.15) which is SU(2) and SB(2,C) invariant but
degenerate, or one could use the scalar product induced by the Riemannian metric H , which,
on the algebra sb(2,C) takes the form

((
ẽi, ẽ j

))
= δ i j + ε i

l3δ lkε j
k3, positive definite and non-

degenerate. However, this is SU(2) invariant but only invariant under left SB(2,C) action. Indeed,
by observing that the generators ẽi are not Hermitian, (2.18) can be verified to be equivalent to:

((u,v))≡ 2Re
[
Tr
(
u†v
)]
, (4.3)

so that ((g̃−1 ˙̃g, g̃−1 ˙̃g)) = 2Re
{

Tr[(g̃−1 ˙̃g)†g̃−1 ˙̃g]
}

which is not invariant under right SB(2,C) action,
since g̃−1 6= g̃†. We use the latter scalar product: T r(ab) ≡ ((a,b)), therefore the Lagrangian is
left/right invariant under SU(2) but only left SB(2,C) invariant, while the original rotator model
was invariant under left/right actions of both groups. Again the group manifold can be embedded in
the R4 ambient space and parametrized so that g̃ ∈ SB(2,C) can be written as g̃ = 2

(
u0ẽ0 + iuiẽi

)
with ẽ0 = I/2 and u2

0−u2
3 = 1. The latter condition follows from the det(g̃) = 1 condition. This is

easily understood from the explicit form of the generators, as written in (2.9):

ẽ1 =

(
0 i
0 0

)
; ẽ2 =

(
0 1
0 0

)
; ẽ3 =

i
2

(
1 0
0 −1

)
(4.4)

15



P
o
S
(
C
O
R
F
U
2
0
1
8
)
1
2
3

T-Duality and Rotator Franco Pezzella

In order to be consistent we have then:

ui =
1
4
((

ig̃, ẽi)) , i = 1,2, u3 =
1
2
((

ig̃, ẽ3)) , u0 =
1
2
((

g̃, ẽ0)) . (4.5)

Most of these calculations work in the same way as for the IRR model, with the appropriate dif-
ferences in the parametrizaton of g̃ ∈ SB(2,C) and in the scalar product (this time invariant only
under left SB(2,C) action) which defines the metric hi j ≡

(
δ i j + ε i

l3ε j
k3δ lk

)
, hence we will not go

through details in this section. Since g̃−1 = 2
(
u0ẽ0− iuiẽi

)
we have

g̃−1 ˙̃g = 2i
(

u0u̇i−uiu̇0 + fi
jku ju̇k

)
ẽi = 2i ˙̃Qiẽ

i, (4.6)

where the f i j
k = ε i jlεl3k are the structure constants of sb(2,C), so that the Lagrangian can be

written as
L̃0 = hi j ˙̃Qi

˙̃Q j, (4.7)

having defined
˙̃Qi ≡ u0u̇i−uiu̇0 + fi

jku ju̇k (4.8)

as left generalized velocities and

hi j = δ
i j + ε

im3
δmnε

jn3 . (4.9)

Following the same approach as with the IRR, the equations of motion of the system can be found
to be

LΓ
˙̃Q jh

ji− ˙̃Ql
˙̃Qm fk

ilhmk = 0. (4.10)

We can then consider (Q̃i,
˙̃Qi) as tangent bundle coordinates, with Q̃i implicitly defined, similarly

to the rigid rotator case.
The carrier space of the Hamiltonian dynamics is instead T ∗SB(2,C), with coordinates (Q̃i, Ĩi),

with Ĩi the conjugate left momenta defined as usual as

Ĩi =
∂ L̃0

∂
˙̃Qi

= hi j ˙̃Q j. (4.11)

To perform the Legendre transform from T SB(2,C) to T ∗SB(2,C) we have to invert (4.11), which
results in

˙̃Qi = Ĩ j
(

δ ji−
1
2

ε jp3εiq3δ
pq
)
, (4.12)

leading to the Hamiltonian

H̃0 =
1
2
(
h−1)

i j ĨiĨ j, (4.13)

being (
h−1)

i j =

(
δi j−

1
2

εi p3ε j
q3

δpq

)
(4.14)

the inverse of the metric hi j of (4.9). Similarly to what we have done for the rigid rotator, we can
introduce the linear combination Ĩ =−iĨiẽ∗i over the dual basis ẽ∗i , such that 〈ẽ∗j |ẽi〉= δ i

j. Following
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the same steps as in the case of the rigid rotator we can find the symplectic form from the first-order
action functional, and it reads

ω̃ = dθ̃ = dĨi∧ α̃i + Ĩi fi
jk

α̃ j ∧ α̃k. (4.15)

By inverting ω̃ we find the Poisson algebra

{ui,u j} = 0 (4.16)

{Ĩi, Ĩ j} = f i j
k Ĩk (4.17)

{ui, Ĩ j} = δ
j

i − fi
jkuk ⇐⇒ {g̃, Ĩ j}= 2ig̃ ẽ j, (4.18)

from which the Hamilton equations of motion can be obtained as follows:

˙̃I
i
= {Ĩi, H̃0}= fk

i j Ĩk Ĩl(h−1) jl, (4.19)

g̃−1ġ = 2iẽi(h−1)i j Ĩ j. (4.20)

The fact that Ĩ j are not conserved is expected and it expresses the non-invariance of the model
under right SB(2,C) action. One can easily check that right momenta, obtained from right-invariant
vector fields which generate left action, would result to be constants of motion.

Analogously to the IRR case, we can remark that the fibers of T SB(2,C) can be identified
with sb(2,C) ' R3 (as a vector space), as well as the fibers of T ∗SB(2,C), identified with the
dual algebra sb(2,C)∗, which is also isomorphic, as vector space, to R3, but the elements are
now components of one-forms. The carrier space of the Hamiltonian dynamics for the dual model
T ∗SB(2,C) is represented, as a group, by the semi-direct product of SB(2,C) and the Abelian group
R3, i.e. T ∗SB(2,C)' SB(2,C)nR3, and the Lie algebra is a semi-direct sum represented by

[Bi,B j] = i fi j
kBk (4.21)

[Si,S j] = 0 (4.22)

[Bi,S j] = i fi j
kSk, (4.23)

being Bi the generators of the SB(2,C) algebra and Si the generators of R3. Again, as before for
the IRR, the non-trivial Poisson brackets (4.16) can be understood in terms of the coadjoint action
of SB(2,C) on its dual algebra.

5. The Doubled Action

The two models we described can be obtained from the same parent action defined on the
whole SL(2,C) group by introducing the natural doubling of coordinates of SL(2,C) as a Drinfel’d
double. In this sense they appear as dual.

In this regard, we can introduce the following doubled notation for the sl(2,C) generators:

eI =

(
ei

ẽi

)
, ei ∈ su(2), ẽi ∈ sb(2,C). (5.1)
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In this notation, we can rewrite the scalar product of sl(2,C) in (2.10) as

〈eI,eJ〉= ηIJ =

(
0 δ

j
i

δ i
j 0

)
. (5.2)

This is the O(3,3) invariant metric reproducing the fundamental structure in Doubled Geometry,
i.e. the usual O(d,d) invariant metric.

The Riemannian product defined in (2.18) can be written instead as

((eI,eJ)) = HIJ =

(
δi j ε3i

j

−ε i
j3 δ i j + ε i

l3ε j
k3δ lk

)
, (5.3)

which satisfies the relation H T ηH =η , indicating that H is a pseudo-orthogonal O(3,3) matrix.
In this way we can clearly see how the metric η and the metric H naturally emerge out. In fact, η

corresponds to the O(d,d) invariant metric while H to the so-called generalized metric, with δi j

playing the role of the graviton field Gi j and εi j3 playing the role of the Kalb-Ramond field Bi j.

5.1 Lagrangian description

In order to introduce the Lagrangian formalism of the doubled model on T SL(2,C) we de-
scribe it again as a 0+ 1-dimensional group-valued field theory, with dynamical variables φ : t ∈
R→ γ(t) ∈ SL(2,C). In particular, using the doubled coordinates we introduced before, the left-
invariant Maurer-Cartan one-form on the group manifold is γ−1dγ ∈ sl(2,C)⊗Ω1(SL(2,C)) can
be pulled back to R yielding

φ
∗ (

γ
−1dγ

)
= γ

−1
γ̇ dt ≡ Q̇IeIdt, (5.4)

being Q̇I the left generalized velocities, which we can decompose as Q̇I ≡
(
Ai,Bi

)
, resulting in

γ
−1

γ̇ dt =
(
Aiei +Biẽi)dt. (5.5)

Both generalized velocities components are coordinates of the tangent bundle of SL(2,C) but(
Ai,Bi

)
could also alternatively be interpreted in terms of Generalized Geometry as fiber coor-

dinates of the generalized bundle T ⊕T ∗ with base space SU(2).
The components of the generalized velocity can be obtained by using the scalar product (2.10):

Ai = 2Im
[
Tr
(
γ
−1

γ̇ ẽi)] ; Bi = 2Im
[
Tr
(
γ
−1

γ̇ei
)]
. (5.6)

The doubled action on SL(2,C) can be introduced at this point using both the scalar products, as
follows:

S =
1
2

∫
R

[
k1〈φ ∗

(
γ
−1dγ

)
,∗φ ∗

(
γ
−1dγ

)
〉+ k2

((
φ
∗ (

γ
−1dγ

)
,∗φ ∗

(
γ
−1dγ

)))]
, (5.7)

where k1 and k2 are two real parameters. In terms of generalized velocities, since

〈φ ∗
(
γ
−1dγ

)
,∗φ ∗

(
γ
−1dγ

)
〉= dt Q̇IQ̇J〈eI,eJ〉= dt Q̇IQ̇J

ηIJ (5.8)
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and ((
φ
∗ (

γ
−1dγ

)
,∗φ ∗

(
γ
−1dγ

)))
= dt Q̇IQ̇J

((eI,eJ)) = dt Q̇IQ̇J
HIJ, (5.9)

we can write the action (up to an overall constant) explicitly in terms of the splitting of sl(2,C) as
a Drinfel’d double su(2) ./ sb(2,C):

S =
1
2

∫
R

dt EIJQ̇IQ̇J
, (5.10)

with EIJ = k ηIJ +HIJ , and we defined k = k1
k2

. We can observe that the matrix EIJ is non-singular
provided k 6= 1, which is a condition we assume from now on. Explicitly, in terms of fiber coordi-
nates of T SL(2,C) the Lagrangian gets the form:

L =
1
2

[
δi jAiA j +

(
kδ

j
i + εi

j3
)

AiB j +
(
kδ

i
j− ε

i
j3
)

BiA j +hi jBiB j

]
. (5.11)

The Lagrangian one-form is
θL = EIJ Q̇I

α
J, (5.12)

so that the equations of motion in the intrinsic formulation can be written as

LΓQ̇IEIJ− Q̇PQ̇QCIP
KEQK = 0, (5.13)

being CIP
K the structure constants of the sl(2,C) Lie algebra.

5.2 Hamiltonian description

As usual, we can define the left generalized momenta in the doubled description as

II =
∂L

∂ Q̇I = EIJQ̇J
, (5.14)

so that the Hamiltonian then reads as:

H =
[
IIQ̇

I−L
]
|Q̇I

=(E−1)IJIJ
=

1
2
(E−1)IJIIIJ (5.15)

with

(E−1)IJ =
1

1− k2

(
δ i j + ε il3δlkε jk3 −δp j

(
ε ip3 + kδ ip

)
δ p j (εip3− kδip) δi j

)
. (5.16)

Moreover, we can write the components of II explicitly in terms of the (Ai,Bi) components:

II ≡ (Ii, Ĩi) =
(

δi jA j +
(

kδ
j

i + εi
j3
)

B j,
(
kδ

i
j− ε

i
j3
)

A j +
(

δ
i j +δ

lk
ε

i
l3ε

j
k3

)
B j

)
, (5.17)

so that in terms of the components (Ii, Ĩi) the Hamiltonian can be written as follows:

H =
1

2(1− k2)

[(
δ

i j + ε
il3

δlkε
jk3
)

IiI j +δi j ĨiĨ j−2
(
ε

ip3 + kδ
ip)

δp jIiĨ j
]
. (5.18)

We can consider the linear combination I = − i
2 IIeI∗ = − i

2

(
Iiei∗+ Ĩiẽ∗i

)
, such that, using also

γ−1dγ = 2iαKeK = i
(
αkek +βkẽk

)
we obtain the symplectic form ω on T ∗SL(2,C):

ω = dθ = dIi∧α
i + II CI

JK α
J ∧α

K , (5.19)
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from which the Poisson brackets for the generalized momenta can be obtained:

{Ii, I j} = εi j
kIk (5.20)

{Ĩi, Ĩ j} = f i j
k Ĩk (5.21)

{Ii, Ĩ j} = εil
j Ĩl− Il fi

l j, {Ĩi, I j}=−ε
i
jl Ĩl + Il f li

j, (5.22)

while those between momenta and configuration space variables are unchanged with respect to
T ∗SU(2) and T ∗SB(2,C). We can write these brackets in compact (and doubled) form as

{II,IJ}=CIJ
KIK . (5.23)

Finally, the Hamilton equations can be derived as follows:

İI = {II,H}= (E−1)JK{II,IJ}IK = (E−1)JKCIJ
L ILIK . (5.24)

5.3 Relation with Generalized Geometry and Poisson-Lie symmetries

Since we can consider the isomorphism T SL(2,C)' SL(2,C)× sl(2,C) with the fiber

sl(2,C)' su(2)⊕ sb(2,C)' T SU(2)⊕T ∗SU(2), (5.25)

one can rewrite the Poisson algebra (5.20) as

{I + Ĩ,J+ J̃}= {I,J}−{J, Ĩ}+{I, J̃}+{Ĩ, J̃}, (5.26)

having defined I = iIiei∗ , J = iJiei∗ as one-forms and Ĩ = Ĩiẽ∗i , J̃ = J̃iẽ∗i as vector fields. Poisson
brackets (5.20) are given by the KSK brackets on the coadjoint orbits of SL(2,C), but in particular,
they are induced by the bialgebra structure of SL(2,C) and according to (5.26) they can be identified
with the C-brackets [60, 61] of Generalized geometry 3 for the generalized bundle T ⊕T ∗, being
{ei∗} and {ẽ∗i } bases over T ∗ and over T respectively. Namely, the doubled momenta (Ii, Ĩi) identify
the fiber coordinates of the generalized bundle T ⊕T ∗ of SU(2).

Furthermore, defining Hamiltonian vector fields in terms of Poisson brackets as usual as

X f = {·, f} (5.27)

and defining in particular Xi = {·, Ii}, X̃ i = {·, Ĩi}, one can find, because of the non-trivial Poisson
bracket (5.20), and by using Jacobi identity:

[Xi,X j] = {{·, I j}, Ii}−{{·, Ii}, I j}= {·,{Ii, I j}}= εi j
kXk, (5.28)[

X̃ i, X̃ j] = {{·, Ĩ j}, Ĩi}−{{·, Ĩi}, Ĩ j}= {·,{Ĩi, Ĩ j}}= f i j
kX̃k, (5.29)[

Xi, X̃ j] = {{·, Ĩ j}, Ii}−{{·, Ii}, Ĩ j}= {·,{Ii, Ĩ j}}=− fi
jkXk− X̃k

εki
j, (5.30)

or, in a unified fashion:

[X + X̃ ,Y + Ỹ ] = [X ,Y ]+ [X̃ ,Ỹ ]+LXỸ −LY X̃ . (5.31)

3C-brackets are mixed brackets between vector fields and forms. They generalize Courant and Dorfmann brackets
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This shows, remarkably, that the C-brackets can be obtained as derived brackets [62] from the
canonical Poisson brackets of the dynamics.

It is important at this point to summarize and discuss in what sense the two submodels possess
Poisson-Lie symmetries. We have seen in Sect. 2 what Poisson-Lie T-duality means and how it is
related to the concept of Drinfel’d double. Namely, we have seen that under appropriate conditions
the sigma models defined on groups that are dual partners in a Manin triple polarization are indeed
dual, in the sense that they describe the same physics even if there is no such manifest symmetry in
neither of the two dual actions. Indeed, the two models can be seen to be connected by a canonical
transformation on their phase-space variables and classically their dynamics is indistinguishable.
However, a parent model can be formulated on the Drinfel’d double group and at this stage Poisson-
Lie duality becomes a manifest symmetry and the two submodels can be obtained by gauging
conditions. Furthermore, there are two symmetric ways to perform the decomposition: γ = g̃g
or γ = gg̃. In our simple case, we started from the action of an isotropic rigid rotator on the
group manifold SU(2), and having realized that SL(2,C) can be seen as a Drinfel’d double and
in particular sl(2,C) = su(2) ./ sb(2,C) is a Manin triple, we built the dual model on SB(2,C),
they can then be obtained from the generalized action on SL(2,C) under appropriate gauging. In
this sense we can see we have the ingredients under which Poisson-Lie duality relies. It is already
enough in principle to state that the model is a Poisson-Lie model.
However, note that in this case the model is too simple to have Poisson-Lie symmetry, indeed, there
does not exist a canonical transformation, that is due to the fact the model under analysis is not a
genuine field theory. In fact, this can be found instead in the principal chiral model case [56].

5.4 Recovering the dual models

The standard dynamics of the isotropic rigid rotator and its dual model can be recovered from
the doubled Lagrangian we have introduced. In order to get back one of the two models one has to
impose constraints, as is customary in DFT. In particular, one has to gauge either SU(2) or SB(2,C)
and integrate out.

For definiteness, we specify and fix a local Iwasawa decomposition for the elements of SL(2,C)
as γ = g̃g, with g̃ ∈ SB(2,C) and g ∈ SU(2). From the action in (5.7) and the properties we have
remarked on the two scalar products defined on SL(2,C), it can be seen that the Lagrangian is
manifestly globally invariant under both left and right SU(2) actions but only under left SB(2,C)
action. Therefore, in order to recover the T SU(2) rotator description this left SB(2,C) invariance
has to be promoted to a gauge symmetry and then gauged appropriately. The left SB(2,C) action
is given by

SB(2,C)L : γ → h̃γ = h̃g̃g, ∀ h̃ ∈ SB(2,C). (5.32)

Promoting this global symmetry to a gauge one, we modify the Maurer-Cartan one-form defining
the covariant exterior derivative DC̃ = d+C̃, where C̃ is the gauge connection one-form C̃ = C̃i(t)ẽi,
so that

φ
∗ (

γ
−1dγ

)
→ φ

∗ (
γ
−1DC̃γ

)
=
(
γ
−1

γ̇ + γ
−1C̃γ

)
dt. (5.33)

We can make explicit the doubled notation by performing the following splitting:

γ
−1

γ̇ + γ
−1C̃γ =Ui ẽi +W iei, (5.34)
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whose components can be obtained from

Ui = 2Im
{

Tr
[(

γ
−1

γ̇ +C̃ jγ
−1ẽ j

γ
)

ei
]}

(5.35)

and
W i = 2Im

{
Tr
[(

γ
−1

γ̇ +C̃ jγ
−1ẽ j

γ
)

ẽi]} . (5.36)

These can be computed explicitly by means the coadjoint action of g, g̃ on e j, ẽ j represented by the
Lie brackets (2.8) (for the ei), (2.12) and (2.13). However, this is not necessary for our purposes
and details can be found in [46]. In terms of these new degrees of freedom we can write down the
doubled Lagrangian with the gauge connection added, so the gauged Lagrangian reads

LC̃ =
1
2

[
δi jW iW j +2

(
kδ

j
i + εi

j3
)

W iU j +hi jUiU j

]
, (5.37)

since

LC̃ = 1
2

[
k1〈φ ∗

(
γ−1DC̃γ

)
,∗φ ∗

(
γ−1DC̃γ

)
〉+ k2

((
φ ∗
(
γ−1DC̃γ

)
,∗φ ∗

(
γ−1DC̃γ

)))]
(5.38)

= 1
2 EIJ

˙̂Q
I ˙̂Q

J
, (5.39)

with ˙̂Q
I
= (W i,Ui). Then, performing the transformation

Ŵ i =W i +
(
kδ

is− ε3
is)Us, (5.40)

we have
LC̃ =

1
2
[
δi jŴ iŴ j +

(
1− k2)

δ
i jUiU j

]
. (5.41)

We will use this form for writing the Euclidean partition function of the system

Z =
∫

DgDg̃DC̃ e−SC̃ (5.42)

and integrate over the gauge connection. In particular, we can trade the integration over C̃i with an
integration over Ui:

Z =
∫

DgDg̃ det
(

δC̃i

δU j

)
e−

1
2
∫
R dt δi jŴ iŴ j

∫
DU e−

1
2
∫
R dt (1−k2)δ i jUiU j . (5.43)

It is easy to see that the Jacobian determinant of the C̃→U transformation is constant since the
matrices involved in the gauge transformations are constant, hence it only results in a regularization
factor. Using the fact that the Gaussian integral over U is also a constant, the partition function can
be finally written in the form

Z ∝

∫
DgDg̃e−

1
2
∫
R dt δi jŴ iŴ j

. (5.44)

In order to compare with the IRR action (3.1) we can make a step further. It is possible to introduce
the endomorphism E of sl(2,C) = su(2)⊕sb(2,C) which preserves the Drinfel’d splitting, defined
by the constant matrix

E =

(
δ i

j T i j

−(T−1)i j δ
j

i

)
(5.45)
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such that we can make the following splitting-preserving change of variables on sl(2,C) as a Drin-
fel’d double:

E

(
W j

U j

)
=

(
Ŵ j

Û j

)
. (5.46)

In this way, we can write the Maurer-Cartan left-invariant one-forms as

Φ
∗
(

g′−1dg′
)
= Ŵ ieidt, Φ

∗ (g̃′−1dg̃′
)
= Ûiẽidt. (5.47)

The endomorphism E induces an exponential map exp(E) : SL(2,C)→ SL(2,C) such that γ = g̃g
is mapped into γ ′ = g̃′g′, so that the integration measure can be transformed into Dg′Dg̃′ , hence up
to a constant factor (the determinant of exp(E)) the partition function can be written as

Z ∝

∫
Dg̃′

∫
Dg′e−

1
2
∫
RTr[Φ∗(g′−1dg′)∧∗Φ∗(g′−1dg′)]. (5.48)

Clearly the integration over g̃′ gives another constant, while the other integral is the partition func-
tion of the IRR model.

The dual model with carrier space T SB(2,C) can be recovered following exactly the same
procedure but gauging this time the global right SU(2) action invariance. The main difference with
respect to the previous case is that the gauge connection one-form is now su(2)-valued, and under
the integral it is suitable to be traded for the integration over the dual analogue of W in (5.34). This
case has been carried out in detail in [46].

6. Conclusions

After reviewing some of the fundamental aspects of Drinfel’d double and Poisson-Lie T-
duality, we have considered the dynamics of the three-dimensional isotropic rigid rotator on the
group manifold of SU(2) and its dual model on the group SB(2,C), first introduced in [46], in
the spirit of outlining their connection with Poisson-Lie sigma models. We have analyzed the two
models from the Poisson-Lie duality point of view, building a doubled generalized model with
T SL(2,C) as carrier space. This was done with the purpose of exploring more deeply the relations
between Poisson-Lie symmetries, Double Geometry and Generalized Geometry in a particularly
simple system so that the framework could be more easily and explicitly understood. In fact, we
were able to recover all the mentioned structures in such a simple system; for example, we found
a Poisson realization of the C-brackets for the generalized bundle T ⊕ T ∗ over SU(2) from the
Poisson algebra of the generalized model. This shows that C-brackets can be obtained as derived
brackets, in analogy with the ideas presented in [60, 61], with the remarkable property that in this
case they are derived from the Poisson brackets of the dynamics.

The two dual models exhibit many characteristics of dual Poisson-Lie sigma models and from
the generalized action both can be recovered by gauging one of its symmetries, as it is customary
in the framework of Double Field Theory. However, the dynamics described by the two models is
not equivalent.

DFT has the purpose of making T-duality manifest in the target space low-energy effective
theory. Many attempts have been done in the direction of generalizing the DFT description to
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Poisson-Lie T-duality, which is a generalization of the standard Abelian and non-Abelian concepts
of T-dualities, see e.g. [50]. However, a manifest implementation of T-duality already at the level
of world-sheet string action has not been yet clearly recovered, which would be of course even
more interesting. The isotropic rigid rotator is a toy model, representing a sigma model in 0+ 1
dimensions. Its true field theory generalization, which is the Principal Chiral Model, is presented
in [56]; the inclusion into the latter of a Wess-Zumino term is currently under investigation [57].
Besides being interesting per se, these models may contribute to a better understanding of the string
world-sheet formulation, with the possibility of writing a manifestly O(d,d) T-duality invariant
doubled action in a more rigorous way and then performing the low energy limit where all the
results obtained in Double Field Theory should be recovered.

Acknowledgments F.P. would like to thank the organizers of the Workshop on Dualities and
Generalized Geometries for the invitation to deliver this talk.
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