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1. Introduction

Assuming small spacetime curvature, the low-energy limit of superstring theory is described
by a supergravity theory. Using this connection our knowledge about supergravity has teached us
a lot about some basic properties of superstring theory such as T-duality, D-branes, exotic branes
etc. Via it’s embedding into string theory, supergravity in an AdS background has an intriguing
holographic relation with a conformal field theory in one dimension lower. This latter relationship
has also been investigated at the non-relativistic level by considering background geometries in the
bulk that have non-relativistic isometries such as Lifshitz or Schrödinger symmetries. This leads to
non-relativistic conformal field theories at the boundary that have applications in condensed matter
physics.1

A different and less well studied corner of non-relativistic holography occurs when the gravity
in the bulk itself becomes non-relativistic. It has been argued that the relevant non-relativistic
gravity is an extension of Newton-Cartan (NC) gravity, i.e. the frame-independent formulation
of Newtonian gravity. This new kind of holography leads to non-relativistic CFTs at the boundary
with a different set of symmetries such as the (infinite-dimensional) Galilean conformal symmetries
[1]. We are especially interested in the possibility that the non-relativist gravity theory in the bulk
is connected to a non-relativistic string theory in the same way that general relativitv is related to
relativistic string theory. This non-relativistic string theory could then perhaps be used as at starting
point by itself, independent of the relativistic string theory, to study non-relativistic holography.

Independent of holography, it was realized in the condensed matter community that repara-
metrization invariance is not only relevant to gravity but also plays a crucial role in Effective Field
Theories (EFTs), where one writes effective Lagrangians in an expansion organized according to
the number of derivatives. Coupling an EFT to an arbitrary gravitational background enables one to
study generic features of this EFT in an arbitrary frame. The application of non-relativistic gravity
in this new context was pioneered by Son and coworkers [2]. The detailed understanding of how
to couple a non-relativistic EFT to a general NC gravitational background can be obtained system-
atically by starting from a relativistic EFT in a general gravitational background that includes an
auxiliary zero-flux vector field [3]. By taking a special limit of this EFT in a frame-independent
way, one automatically obtains a non-relativistic EFT in a Newton-Cartan background.

This talk is organized as follows. In the first part we recall how the kinematics of NC gravity
follows from gauging a specific non-relativistic algebra. We extend this analysis to String NC
gravity. In the second part we discuss the non-relativistic string theory that naturally couples to the
String NC geometry. In particular, we discuss the T-duality properties of this new kind of geometry.
At the end we give our conclusions.

2. Newton-Cartan Gravity

It is well-known that the symmetries connecting non-relativistic inertial frames are given by
the following set of Galilei symmetries:

1It has been found that the non-relativistic conformal field theories at the boundary couple to a Newton-Cartan
geometry with twistless torsion [13].
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• time translation : δ t = ξ 0 ,

• space translations : δxi = ξ i , i = 1,2,3 ,

• spatial rotations : δxi = λ i
j x j ,

• Galilean boosts : δxi = λ it .

Here ξ 0,ξ i,λ i
j and λ i are the constant parameters associated with the time translation, space trans-

lations, spatial rotations and Galilean boosts, respectively. These symmetries are identical to the
Poincaré symmetries except for the Galilean boosts which differ from the Lorentzian boosts in the
sense that under Galilean boosts the spatial coordinates xi transform to the absolute time coordinate
t, but t does not transform back into the spatial coordinates xi.

It turns out that gauging the Galilei algebra associated with the above symmetries is not suffi-
cient to obtain NC gravity. One way to see this is to realize that the spin-connection fields associated
with the spatial rotations and boost symmetries are dependent fields in General Relativity and one
expects this to be the same in NC gravity. In General Relativity this is obtained by setting the
torsion equal to zero which yields the 24 so-called conventional constraints needed to solve the 24
spin-connection fields associated with the Lorentz transformations. The problem with the Galilei
algebra is that the curvature of time translations does not contain a spin-connection field and hence
cannot be used for obtaining a conventional constraint. Therefore, there are not enough conven-
tional constraints to solve for all spin-connections. One way to circumvent this issue is to work
with a centrally extended Galilei algebra, called the Bargmann algebra. It turns out that the cur-
vature corresponding to the central charge transformations does contain the boost spin-connection
fields. By setting this curvature to zero one acquires the 6 missing conventional constraints. To-
gether with the 18 conventional constraints that follow from setting the curvature corresponding to
the spatial translations equal to zero, one is now able to solve for the 12 spatial rotation connection
fields Ωµ

ab (µ = 0,1,2,3;a = 1,2,3) and the 12 Galilean boost connection fields Ωµ
a. The central

charge introduced by the Bargmann algebra also has a physical interpretation. When coupled to
matter, the U(1) central charge symmetry leads to a conserved Noether charge expressing the con-
servation of particle number. It also leads to the fact the the Schrödinger equation is necessarily
complex providing a projective representation of the Galilei algebra.

We now consider the gauging of the Bargmann algebra [4]. Our starting point is the set of
commutation relations defining the Bargmann algebra

[Jab,Pc] =−2δc[aPb] , [Jab,Gc] =−2δc[aGb] ,

[Ga,H] =−Pa , [Ga,Pb] =−δabZ , (2.1)

where {H,Pa,Jab,Ga,Z} with a = 1,2,3 are the generators of time translation, space translations,
spatial rotations, Galilean boosts and central charge transformation, respectively. In this gauging
procedure we associate to every generator/symmetry a gauge field and gauge parameters that are
arbitrary functions of spacetime together with the covariant curvatures, see Table 1 below. Note
that we have left out the parameters corresponding to the time and space translations. Instead, we
assume that all gauge fields transform as covariant vectors under general coordinate transformations
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symmetry generators gauge field parameters curvatures

time translation H τµ – Rµν(H)

space translations Pa Eµ
a – Rµν

a(P)

Galilean boosts Ga Ωµ
a λ a(xν) Rµν

a(G)

spatial rotations Jab Ωµ
ab λ ab(xν) Rµν

ab(J)

central charge transf. Z Mµ σ(xν) Rµν(Z)

Table 1: This table indicates for every symmetry of the Bargmann algebra the corresponding generators,
gauge fields, local gauge parameters and covariant curvatures.

with parameters ξ µ(x). The two symmetries (H and P transformations versus general coordinate
transformations) are related to each other via a so-called trivial or Zilch symmetry [5].

One can now show that by imposing the 24 conventional constraints

Rµν
a(P) = Rµν(Z) = 0 (2.2)

the 24 connection fields Ωµ
ab and Ωµ

a can be solved in terms of independent gauge fiels . Further-
more, we impose the 6 geometric constraints

Rµν(H) = 2∂[µτν ] = 0 → τµ = ∂µτ , (2.3)

defining absolute time. Due to this constraint the time difference ∆T between two events becomes
independent of the path C that the observer has traveled between these two events:

∆T =
∫

C
dxµ

τµ =
∫

C
dτ . (2.4)

One thus ends up with three independent gauge-fields {τµ ,Eµ
a,Mµ} that transform under

general coordinate transformations, with parameters ξ µ , as covariant vectors and under spatial
rotations, Galilean boosts and central charge transformation as follows:

δτµ = ξ
λ

∂λ τµ +∂µξ
λ

τλ ,

δEµ
a = ξ

λ
∂λ Eµ

a +∂µξ
λ Eλ

a +λ
a

b Eµ
b +λ

a
τµ ,

δMµ = ξ
λ

∂λ Mµ +∂µξ
λ Mλ +∂µσ +λa Eµ

a .

(2.5)

One may define the following Bargmann-invariant metrics

τµν = τµτν , hµν = Eµ
aEν

b δ
ab , (2.6)

one in the time direction and a separate one in the spatial directions. One cannot define a boost-
invariant metric with upper indices in the time direction or lower indices in the spatial directions. A
Galilean boost-invariant metric can be obtained by adding terms proportional to the central charge
gauge field Mµ as follows:

Hµν = Eµ
aEν

b
δab−2τ(µMν) . (2.7)
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However, in that case one ends up with a metric that is not invariant under the central charge gauge
transformation.

Newton-Cartan gravity can be obtained as a non-relativistic limit of general relativity, much in
the same way as the Bargmann algebra can be obtained as the Inönü-Wigner contraction of the di-
rect product of the Poincaré algebra and a U(1) generator. The latter has the physical interpretation
that, when coupled to matter, its Noether charge corresponds to the conservation of particles mi-
nus anti-particles. To describe this particular Inönü-Wigner contraction we consider the Poincaré
algebra plus an additional U(1) generator Ẑ that commutes with all the Poincaré generators:[

P̂Â,M̂B̂Ĉ

]
= 2ηÂ[B̂ P̂Ĉ] ,

[
M̂ÂB̂,M̂ĈD̂

]
= 4η[Â[Ĉ M̂D̂]B̂] plus Ẑ . (2.8)

Here {P̂Â,M̂ÂB̂} are the generators of spacetime translations and Lorentz transformations, respec-
tively. We have indicated all relativistic generators with a hat to distinguish them from the non-
relativistic case. The extra U(1) generator Ẑ is needed because the Bargmann algebra contains
one generator more than the Poincaré algebra. Next, we decompose Â = (0,a) and relate the
Poincaré ⊗ U(1) generators {P̂0, P̂a M̂a0,M̂ab} and Ẑ to the non-relativistic Bargmann generators
{H,Pa,Ga,Jab,Z} as follows:

P̂0 =
1

2ω
H +ω Z , Ẑ =

1
2ω

H−ω Z , (2.9)

P̂a = Pa , M̂ab = Jab , M̂a0 = ω Ga , (2.10)

where we have introduced a contraction parameter ω . In a second step, taking the limit ω → ∞,
we obtain the Bargmann algebra including the following commutator containing the central charge
generator Z: [

PA,GB
]
= δAB Z . (2.11)

Poincaré ⊗ U(1)
‘gauging’
=⇒ GR plus ∂µ M̂ν −∂ν M̂µ = 0

contraction ⇓ ⇓ the NC limit

Bargmann
‘gauging’
=⇒ Newton-Cartan gravity

Figure 1. This figure compares the Inönü-Wigner contraction of the Poincaré algebra times a U(1)
with the non-relativistic limit of general relativity plus a zero flux gauge field M̂µ discussed in the
text.

The non-relativistic limit of general relativity, which is inspired by the above Inönü-Wigner
contraction, is introduced as follows, see Figure 1. Using a second-order formulation of general rel-
ativity, we first introduce, on top of the Vierbein field, a vector field M̂µ with ∂[µM̂ν ] = 0 [3]. Next,
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we relate the relativistic gauge fields {Êµ
Â,M̂µ} to the non-relativistic gauge fields {τµ ,Eµ

a,Mµ}
of NC gravity as follows:

Êµ
0 = ω τµ +

1
2ω

Mµ , M̂µ = ω τµ −
1

2ω
Mµ , Êµ

a = Eµ
a . (2.12)

In a second step we take the limit ω → ∞ in the relativistic transformation rules. In this way we
obtain the correct non-relativistic transformation rules (2.5). The same limit can be used to derive
the NC gravity equations of motion from the Einstein equations. Note that the standard textbooks
on general relativity usually go straight from General Relativity to Newtonian gravity skipping the
general frame formulation of Newtonian gravity.

A striking feature of the non-relativistic limit we just defined is that it requires the introduction
of the auxiliary gauge field M̂µ . Another way to see the necessity of this additional gauge field for
taking the limit is considering the action of a particle moving in a general relativistic gravitational
background. In order to define a limit without fatal divergencies one needs to couple the particle
not only to general relativity but also to the gauge field M̂µ via a so-called Wess-Zumino term.
This brings us to the remarkable conclusion that the limit of general relativity we just defined is
particular to particles. It will not work for other extended objects such as strings. This leads to the
following question:

If NC gravity couples to particles what is the non− relativistic gravity that couples to strings?

We will answer this question in the next section.

3. String Newton-Cartan Gravity

A basic difference between particles and strings is that a particle naturally couples to a 1-form
gauge field M̂µ whereas a string couples to a 2-form gauge field M̂µν . In order to cancel the leading
divergence that occurs in the particle limit one needs to add a Wess-Zumino term to the particle
kinetic term with

M̂µ = ωτµ + · · · (3.1)

In the case of strings the cancellation of the leading divergence requires that the 2-form gauge field
M̂µν starts as ω2 times something quadratic in τµ but, due to the anti-symmetry of the 2-form, one
cannot write down such an expression. One way to avoid this problem is to introduce two Vierbeine
τµ

A where A = 0,1 refer to the two (timelike and spacelike) directions longitudinal to the string.
One writes

M̂µν = ω
2
τµ

A
τν

B
εAB +O(ω0) . (3.2)

The τµ
A are two generalized clock functions that define a so-called string NC geometry. The

basic difference with the particle case is that the relativistic index Â is divided up differently in
longitudinal directions A and transverse directions a as follows:

particle: Â = (0,a) with a = 1, · · · ,d (3.3)

string: Â = (A,a) with A = 0,1 and a = 2, · · · ,d−1 . (3.4)

5
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The string Galilei symmetries underlying this geometry are given by

longitudinal translations HA

transverse translations Pa

string Galilei boosts GAb

longitudinal Lorentz rotations MAB

transverse spatial rotations Jab

In gauging the algebra corresponding to these symmetries one again encounters extensions that in
this case are non-central:

[GAa,Pb] = 0 → [GAa,Pb] = δabZA (3.6)

and leads to non-central charge gauge fields Mµ
A. To obtain irreducibility one needs to impose a

set of conventional and geometric constraints. A difference with the particle case is that the zero
torsion constraint now becomes a mixture of conventional and geometric constraint:

Rµν
A(H) = D[µ(Ω)τν ]

A = 0 (3.7)

For instance, in 4 spacetime dimensions, i.e. d = 3, the 12 curvature constraints (3.7) is a mixture
of 4 conventional constraint that can be used to solve for the 4 components of longitudinal spin-
connection fields

Ωµ
AB = ε

AB
Σµ (3.8)

and 8 geometric constraints.
After gauging, one ends up with the independent string NC gauge fields {τµ

A,Eµ
a,mµ

A} that
transform under the different symmetries as follows:

δτµ
A = Λ

A
Bτµ

B ,

δEµ
a = Λ

a
b Eµ

b−ΣA
a
τµ

A ,

δmµ
A = Dµσ

A +Σ
A

a Eµ
a .

(3.9)

Furthermore, all gauge fields transform as covariant vectors under general coordinate transforma-
tions. These transformations rules are the generalization of the particle transformation rules (2.5)
to strings and will play a prominent role as the symmetries on the non-relativistic Polyakov string
we discuss in the next section.

We note that the string analogue of the longitudinal metric (2.6) and boost invariant metric
(2.7) are given by

longitudinal metric : τµν ≡ τµ
A
τν

B
ηAB , (3.10)

boost invariant metric : Hµν ≡ Eµ
aEν

b
δab +

(
τµ

Amν
B + τν

Amµ
B)

ηAB . (3.11)

Like in the particle case, Hµν is invariant under string Galilei boost transformations but transforms
under the non-central charge gauge transformations with parameter σA.

6
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4. The Non-relativistic Polyakov String

To understand the non-relativistic Polyakov string as the limit of the relativistic Polyakov
string, it is instructive to first consider the particle case. Our starting point is a particle in a Polyakov
formulation moving in the fields of general relativity and coupled to the extra gauge field M̂µ via a
Wess-Zumino (WZ) term:

SPol. =−1
2

∫
dτ

{
− 1

e
Êµ

Âẋµ Êν
B̂ẋν

ηÂB̂ +M2e−2MM̂µ ẋµ

}
. (4.1)

Here e is the Einbein and M a mass parameter. Substituing the parametrization (2.12) we obtain a
potential leading divergence of order c2:

SPol.(c2)=−1
2 c2

∫
dτ

1
e

[
τµ ẋµ −me

]2
. (4.2)

To circumvent this potential divergence, we introduce by hand a Lagrange multiplier λ and rewrite
the above term in the following equivalent form:

SPol.(c2)=−1
2

∫
dτ

1
e

{
λ (τµ ẋµ −me)− 1

4c2 λ
2
}
. (4.3)

Solving for λ by using it’s equation of motion one recovers the Lagrangian (4.2). The advantage of
the Lagrangian (4.10) is that the quadratic divergence has disappeared. Note that this rewriting can
only be done after making the expansion (2.12). Strictly speaking we can not consider the result
we obtain as the limit of the original Polyakov Lagrangian (4.1).

Continuing in this way, we obtain the following Lagrangian for the non-relativistic Poyakov
particle:

SPol.(N.R.) =−1
2

∫
dτ

1
e

{
ẋµ ẋνHµν +λ

(
τµ ẋµ −me

)}
(4.4)

Note that the boost invariant metric Hµν defined in eq. (2.7) occurs in the Lagrangian. The fact
that this metric is not invariant under the central charge transformation leads to a total derivative
in the Lagrangian. Solving for e by using the equation of motion for λ leads to the Lagrangian
for the non-relativistic Nambu-Goto particle. Note that the resulting Nambu-Goto Lagrangian is
non-linear in the longitudinal time coordinate τµ ẋµ but quadratic in the transverse coordinates that
are contracted with the boost invariant metric Hµν . This is in contrast to the Lagrangian for the
relativistic Nambu-Goto particle which is non-linear in all directions.

The Lagrangian (4.4) for the non-relativistic Polyakov particle has all the features of the non-
relativistic Polyakov string. To derive the action for the non-relativistic Polyakov string, the rela-
tivistic gauge fields are redefined as follows;

Êµ
A = ωτµ

A +
1
ω

mµ
A , Êµ

a = Eµ
a , (4.5)

M̂µν = ω
2
τµ

A
τν

B
εAB +Bµν . (4.6)

and two Lagrange multipliers λ and λ̄ are introduced to avoid divergences when the limit is taken.
We have used here the following definitions. First of all, we have defined a worldsheet metric hαβ

that can be expressed in terms of worldsheet Zweibeine as follows:

hαβ = eα
aeβ

b
ηab , (4.7)

7
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with α = 0,1(a = 0,1) curved (flat) worldsheet indices. 2 Furthermore, for eµ
a and τµ

A we use the
following lightcone notation:

eα ≡ eα
0 + eα

1 , ēα ≡ eα
0− eα

1 , (4.8)

τµ ≡ τµ
0 + τµ

1 , τ̄µ ≡ τµ
0− τµ

1 . (4.9)

On top of definitions above, by taking ω → ∞ limit of relativistic Polyakov action of a string that
is coupled to both the target space metric Ĝµν and 2-form gauge field M̂µν , the non-relativistic
Polyakov string action

SPol. =−
T
2

∫
d2

σ

[√
−hhαβ

∂αxµ
∂β xνHµν + ε

αβ
(
λ eατµ + λ̄ ēα τ̄µ

)
∂β xµ

]
− T

2

∫
d2

σ ε
αβ

∂αxµ
∂β xνBµν (4.10)

is obtained. Using the equations of motion of the Lagrange multipliers λ and λ̄ one is able to solve
for the worldsheet metric hµν in terms of the longitudinal metric τµν up to a scale factor:

hαβ ∼ ∂αxµ
∂β xν

τµν . (4.11)

Substituting this solution back into the non-relativistic Polyakov Lagrangian (4.10) one obtains the
Nambu-Goto formulation of the non-relativistic Polyakov string [14].

The non-relativistic Polyakov string defined by the Lagrangian (4.10) is a central result. The
nice thing is that, although it was obtained as a kind of limit of the relativistic Polyakov string, one
could use the Lagrangian (4.10) as an independent starting point to investigate the properties of
non-relativitic string theory. Imposing the worldsheet conformal gauge

√
−hhαβ = η

αβ (4.12)

and taking the flat spacetime background

τµ
A = δ

A
µ , Eµ

a = δ
a
µ , Mµ

a = 0 (4.13)

one recovers the Lagrangian of the non-relativistic string theory of [6]

S =−T
2

∫
d2

σ

(
∂xa

∂̄xb
δab +λ ∂̄X + λ̄ ∂ X̄

)
. (4.14)

where

X = x0 + x1 X̄ = x0− x1, (4.15)

∂ = ∂0 +∂1 ∂̄ =−∂0 +∂1. (4.16)

We have generalized this Lagrangian to a string moving in an arbitrary non-relativistic gravitational
background and, moreover, we have identified the geometry underlying the non-relativistic string

2Note that we use the index a both for flat worldsheet indices as well as for flat transverse target space indices.
Whenever confusion could occur we will specify which index we mean.
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as the string NC geometry discussed in section 2. We could now use this relation to study some
of the properties of string NC geometry in the same way as we are doing in the relativistic case.
One of these peculiar properties is the behaviour of the geometry under the so-called T-duality
tranformations. In the next section we will derive the non-relativistic T-duality properties using
the non-relativistic Polyakov Lagrangian (4.10) as our starting point. The non-relativistic limit
introduced above is also applied to the Eintein-Hilbert action plus a term contains an auxiliary two-
form and one-form gauge field and it produces the extended string Newton-Cartan gravity[11].

5. T-duality

Before discussing the non-relativistic case, it is instructive to first go shortly over the relativis-
tic case. Following [8, 9, 10], we assume that the geometry has a spacelike Killing vector kµ . Using
adapted coordinates with isometry direction y

xµ = (y,xi) kµ
∂µ = ∂y (5.1)

we rewrite the non-relativistic Polyakov Lagrangian (4.10) as the following parent action:

Sparent = SPol.(∂αy→ vα)︸ ︷︷ ︸
quadratic in vα !

−T
∫

d2
σε

αβ ỹ∂αvβ , (5.2)

where we have replaced everywhere ∂αy by a new field vα and, moreover, have introduced a new
Lagrange multiplier field ỹ who in a minute is going to play the role of the dual coordinate. The
important point is that the Polyakov Lagrangian (4.10) is quadratic in ∂y and, hence, the parent
action as given in (5.2) is quadratic in vα .

Starting from the parent action (5.2) we can follow two approaches. One, we impose the
equation of motion corresponding to the Lagrange multiplier ỹ leading to the Bianchi identiy for
vα whose solution is given by

vα = ∂αy . (5.3)

Substituting this solution back into the action corresponding to the Polyakov Lagrangian (4.10)
one re-obtains the Polyakov action we started from. Instead of doing this, we can also solve for the
equation of motion of vα . Since the first term in the parent action (5.2) is quadratic in vα this leads
to the following solution for vα :

vα = εα
β

∂β ỹ . (5.4)

Substituting this solution back into the parent action (5.2) leads in the relativistic case to a Polyakov
string moving in a dual geometric background. For instance, taking the ten-dimensional back-
ground to be a nine-dimensional Minkowski spacetime times a circle with radius R, after the duality
transformation one ends up with the same geometry but now with R replaced by 1/R:

R T→ 1/R . (5.5)

This is a special case of the so-called Buscher rules [8, 9, 10].
We now wish to perform the same manipulations for the non-relativistic Polyakov string and

derive the non-relativistic version of the Buscher rules. First of all, it matters whether we dualise

9
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in the longitudinal or transverse direction. This has to do with the fact that the term with the extra
Lagrange multipliers λ and λ̄ only depends on the longitudinal embedding coordinates. These
extra terms, which are absent in the relativistic case, can therefore only effect the longitudinal
T-duality transformations. Following [7] we find the following results:

(i) The longitudinal spatial T-dual of the NR string is the Polyakov string moving in a general
relativity background with a lightlike direction.

(ii) The transverse spatial T-dual of the NR string is again a NR string but with a transverse spatial
isometry direction given by the Buscher rules, i.e. a transverse circle with radius R becomes
a transverse circle with radius 1/R.

6. Conclusions

In this talk we showed that the geometry underlying non-relativistic string theory is given by
the string NC geometry as discussed in section 2. In section 4 we derived the action describing a
non-relativistic Polyakov string moving in this string NC background. This led to the action (4.10)
which should be the starting point for every effort to study non-relativistic string theory. As an
example, we showed in this talk how the action (4.10) could be used to obtain the non-relativistic
T-duality rules which gives information on how a non-relativistic string feels it’s own geometry.

There are many other things one can study now, like , e.g., the calculation of the non-relativistic
beta functions which would determine the consistent backgrounds in which the non-relativistic
string can move. Our hope is that at the end we may use non-relativistic string theory as defined by
the Lagrangian (4.10) to define non-relativistic holography and in this way learn something about
the (non-perturbative) properties of non-relativistic conformal quantum field theories with (infinite-
dimensional) Galilean conformal symmetries that could not be studied using general relativity in
the bulk.
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