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1. Introduction

In recent years, there has been mounting evidence for the existence of branes beyond the
conventional brane scan. It was argued in [1–3] that string theory also contains so-called ‘exotic
branes’ whose tensions1 scale with the string coupling as gα

s with α <−2 (compare to D-branes
or NS5-branes whose tensions scale as α = −1,−2 respectively). Recent work includes the
construction of worldvolume actions for non-geometric five-branes [4–7], as well as instanton
corrections to those exotic backgrounds. For a recent review of non-geometric backgrounds, see [8]

In addition to being highly non-perturbative, these branes are also generically of low codimen-
sion (2 or lower) and are consequently poorly understood objects which modify the asymptotic
behaviour of the spacetime around it. The low codimension of these branes introduces an extra level
of complexity. Since the transverse space is so small (or even non-existent) there is, in some sense,
too little room to traverse freely around the brane. More precisely, such low-codimension branes
possess a non-trivial G(Z)-monodromy2 such that traversing around them only returns a state that is
related to the original configuration by a G(Z)-transformation. Put another way, these are objects
that require duality transformations to patch together, in addition to the usual diffeomorphisms
and gauge transformations. As a consequence, these are not globally well-defined solutions of
supergravity and even the definition of charge becomes troublesome already at codimension-2, as is
discussed at length in [2]. Such exotic branes thus include concrete realisations of the T-folds and
U-folds originally proposed by Hull [9].

Due to the intimate link between exotic branes and dualities it is not unreasonable to expect
the natural description of these exotic states to be in a theory in which the duality has been made
manifest. There have been a number of related attempts at just such a formalism. The doubled
worldsheet model [9, 10] was among the first of these that realised the duality explicitly by doubling
the coordinates of a torus fibration to a T 2d fibration upon which the duality acted naturally. Other
attempts to construct a theory that makes T-duality manifest on the entire spacetime and not just on a
fibration include ‘generalised geometries’ [11–14] which are theories based on the observation that
the parameters of the local symmetries of the bosonic sectors of 10- or 11-dimensional supergravity
can be considered as sections of an extended tangent bundle which carries a natural G(R) structure.

Extended Field Theories (ExFT) take this one step further and realise these continuous sym-
metries as an explicit symmetry of a spacetime that has been extended by coordinates dual to the
winding or wrappings modes of the branes in string- and M-theory. When G(R) = O(n,n;R), the
theory goes by the name of Double Field Theory (DFT)3 whereas the cases where G(R) = En(n)

are called Exceptional Field Theories (EFT). These have been constructed for the finite cases
n = 8, . . . ,2 in [18–24], with further progress on the Kac-Moody algebra E9(9) made in [25, 26]4.

The groups G(R), henceforth referred to as the solution-generation group, that we realise as a
manifest symmetry are evidently not the duality groups themselves but they do contain the discrete
forms as a subgroup. More concretely, the two notions are related in the following manner. Since we

1Note that we shall always work in the string frame unless explicitly stated otherwise.
2Here, G(Z) denotes either a T-duality or U-duality group, depending on whether we are talking about a brane in

Type II supergravity or M-theory
3See [15–17] for reviews
4For the related E11 scheme see, for example, [27–36].
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have extended our spacetime with extra coordinates, we need some way to pick out the coordinates
that we identify as the physical coordinates of string- or M-theory. In the presence of isometries,
there is a ambiguity in the way we may pick out this ‘section’ and the different spacetimes that we
may pick out are related by genuine duality transformations. At the cost of realising G(R) as an
explicit symmetry, rather than the discrete duality groups, we obtain a theory that has proven to be
remarkably versatile. In addition to providing a higher dimensional unification of Type II and 11-
dimensional supergravity, one can obtain gauged supergravities through generalised Scherk-Schwarz
reductions, or describe non-Riemannian backgrounds such as non-relativistic or ultra-relativistic
limits [37–39]. However, the property that we shall focus on here is the apparent natural description
of exotic backgrounds that ExFTs offer.

One of the strengths of ExFT is that it can naturally unify many branes into a single object
on the extended space, just as the Type IIA–M-theory correspondence lead to the realisation that
the D4 and NS5-branes descended from the same object in M-theory. The difference is that we
may construct solutions that are entirely well-behaved on the extended spacetime, yet give rise to
unusual (or even pathological) backgrounds upon reducing back down to 10- or 11-dimensions.
Moreover, since the extended spaces are typically much larger than a single circle, we are afforded
the unification of many more solutions of supergravity into a single solution in ExFT. The reasoning
behind this is that, we may rotate the solution by G-transformations5 before reducing back to string-
or M-theory. Provided that the internal space has a sufficient number of isometries, these new
backgrounds will be related to the original by duality transformations. Examples of this may be
found in [40–48]. As powerful a technique this is, the real utility of this method lies in the fact that
the parent solutions are indifferent to whether the solutions contained within it are geometric or
non-geometric, as demonstrated in the DFT monopole.

The structure of this contribution is as follows. We shall begin with a brief introduction to the
ideas behind EFTs in Section 2, and then specialising to E7(7)×R+ in the latter parts. In Section 3,
we describe a novel solution in E7(7)×R+ EFT that contains exotic branes. This is a more extreme
example of how ExFTs treat the geometric and non-geometric objects on an equal footing; whilst
the DFT monopole contains 2 geometric and 3 non-geometric solutions within it, the geometric
sector of this solution consists only of the KK5A/B and KK6M. The remaining 16 branes are all of
the non-geometric codimension-2 objects described in [2]. Following this, in Section 4, we answer
the question of whether there are more exotic states that one might be able to describe with ExFT
before closing with a discussion of the interpretation of these states in Section 5.

2. An En(n)×R+ Exceptional Field Theory Primer

2.1 The Symmetries of EFTs

We now briefly cover some of the ideas underlying EFTs in general before specialising to
E7(7)×R+ EFT. Just as general relativity can be understood as describing a GL(d)/SO(d) coset,
we describe the geometries appropriate for 11-dimensional supergravity by exceptional cosets of
the form En(n)/K(En(n)), where K(En(n)) is the maximal compact subgroup of En(n). EFTs realise a

5In practise, we begin with a lift of a solution that is already on the charge lattice of BPS states and then restrict to
transformations in G(Z) to remain consistent with Dirac quantisation.
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global En(n)(R) symmetry on a spacetime that has been enlarged to accommodate representations of
the exceptional group.

The starting point is to begin with a nominal splitting of an 11-dimensional space into a
d-dimensional external space M d and the remainder M n (such that d + n = 11). The latter is
extended to a space of dimension dimρ1, where ρ1 is a particular representation of En(n) called the
coordinate representation. Schematically, we have M 11 = M d ×M n→M d ×M dimρ1 . If we
denote the coordinates of M d as xµ and the coordinates of M dimρ1 as Y M (such that µ = 1, . . .d and
M = 1, . . . ,dimρ1), the extended coordinates Y M are acted on linearly by G. Of course, having added
extra coordinates to the internal space, we must have some prescription of reducing back down to 11
or 10 dimensions. This is accomplished by the so-called section condition which essentially restricts
the coordinate dependence to a subset of the extended space. We shall postpone our discussion of it
until after introducing the generalised Lie derivative.

In addition to the global symmetry, we also demand two local symmetries. The first are
the residual diffeomorphisms on the external space M d and the second is a generalised internal
diffeomorphism. Just as the infinitesimal diffeomorphisms of GR are generated by the Lie derivative
we may, quite non-trivially, combine the local symmetries of supergravities in such a way as to
describe them by a single generalised Lie derivative L on the internal space whose parameters
are given by a combination of the parameters of the internal diffeomorphisms with the gauge
transformations of the form fields. We interpret this as a deformation of the usual Lie derivative6

such that if the generalised internal coordinates transform as δY M =−ΛM , then generalised vectors
V M (of weight λ (V )) transform according to δV M = LΛV M. We define

LΛV M := [Λ,V ]M +Y MN
KL∂NΛ

KV L +(λ (V )−ω)∂NΛ
NV M , (2.1)

where Y MN
KL is the so-called Y-tensor [49], formed from G-invariants. In the final term, we see that

the weight of the vector receives a correction by a universal weight which, for EFTs, are given by
ω = 1

n−2 . The usual Lie derivative is recovered if one takes G = GL(d) and taking Y MN
KL = ω = 0.

The fact that this identification is consistent hinges on re-interpreting the generalised Lie derivative
as the sum of transport term and an adjoint-valued transformation,

LΛV M := Λ
N

∂NV M−αn
(
Padj.

)M
N

P
Q∂PΛ

QV N +λ (V )∂NΛ
NV M , (2.2)

where αn are coefficients that depend on the particular theory and Padj. is a projector from ρ1⊗ ρ̄1
onto the adjoint representation ρadj.. The story is quite general and is described in detail, alongside
the case when G = O(n,n), in [12, 50] amongst other places. The price that we pay for making
this generalisation is that L no longer satisfies an algebra, nor is the action on a generalised vector
antisymmetric. If one computes the commutator of two transformations, one finds an algebra
obstructed by terms ∆sec.,

[LU ,LV ] = LJU,VK+∆sec. , (2.3)

where JU,V K := 1
2(LULV −LVLU) is called the E-bracket (or C-bracket in DFT). As it stands, the

transformations do not close onto a well-defined algebra but this may be rectified if we demand the
6The present discussion only holds for n ≤ 7; at n = 8, the story is complicated by the introduction of a separate

gauge symmetry such that the Lie derivative is parametrised by two objects (ΛM ,ΣM). For the present paper, we shall
restrict our attention to n≤ 7 and we refer the reader to [39] for more details.
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obstructions ∆sec. vanishes by imposing some section condition, by hand, to eliminate them. These
terms arises from generic dependences of the fields and gauge parameters on all the coordinates Y M

and it is sufficient to restrict this by demanding

(∂ ⊗∂ )|
ρ̄2

= 0 ↔ Y MN
KL∂M⊗∂N = 0 . (2.4)

We call ρ̄2 ⊂ ρ̄1⊗ ρ̄1 the section representation of G. The notation above is understood to mean that
the partial derivatives may either act on separate objects (strong section condition) or on the same
object (weak section condition). There are only two inequivalent solutions to the section constraint
and these generically pick out a GL(n) or GL(n− 1)×SL(2) subgroup of G, corresponding to
the M-theory section or Type IIB section respectively. Due to the large number of symmetries,
it is possible to write down a unique 2-derivative action (or a pseudo-action in even dimensions,
supplemented by a duality constraint) by demanding that all of these symmetries are respected and
that it reduces correctly to both 11-dimensional supergravity and Type IIB supergravity upon solving
the appropriate strong section condition. This will be given for E7(7) later, once we have covered the
field content of these theories.

2.2 The Field Content

The bosonic field content of EFTs depend on the group under consideration but are all remark-
ably simple, consisting of only

{gµν ,MMN ,A•
•} . (2.5)

Each of these correspond to a metric on the external space (whose determinant we shall denote
g(d)), a generalised metric on the extended internal space and a set of generalised Kaluza-Klein
vectors and an associated set of higher rank tensors (whose exact numbers and index structures we
have represented with place-holders as they depend on the group G under consideration). Here, just
as the metric of GR parametrises the coset GL(d)/SO(d), the generalised metric parametrises the
coset (En(n)×R+)/K(En(n)) and can be parametrised in terms of the supergravity fields, namely an
internal n-dimensional metric and a set of form fields on the internal space M n. These have been
constructed for all the finite cases in [51–53]. The extra scaling factor affords us the flexibility to
take detM 6= 1 which we shall make use of later. For the solution presented here it is sufficient to
note that, in the absence of internal potentials, the generalised metric takes on a diagonal form (see
(2.12), for example).

The generalised Kaluza-Klein vectors act as the glue between the external and internal space,
allowing for non-trivial fibrations of the latter over the former, and carry their own generalised gauge
structure which must be compatible with the symmetries of the theory. This entails a much more
intricate structure than one might first suppose and hinges on some rather delicate cancellations
in the spirit of the tensor hierarchy of gauged supergravity. In particular, their generalised field
strengths are not given by the naïve generalised Lie-covariantised field strengths; they require a
Stückleberg-type correction, plus possibly additional auxiliary higher-form corrections, to ensure
that is covariant with respect to the generalised diffeomorphisms. We shall not discuss the fine gauge
structure in too much detail as it is not particularly relevant for the work presented here. However
we note that, upon solving the section condition, the surviving components of these generalised

4
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gauge fields generically source the cross-sector components of the supergravity form-fields (and,
additionally, the dual graviton in E8(8) EFT).

2.3 Details of E7(7)×R+ EFT

For our purposes, we are interested in the case d = 4 such that we realise a global E7(7)×R+

symmetry7 on an internal space of dimension dimρ1 = 56. The coordinates on this internal extended
space shall be denote Y M (where M = 1, . . . ,56) that transform linearly under the fundamental
representation ρ1 = 56 of E7(7). The generalised Lie derivative is given by

LΛV M = [Λ,V ]M +Y MN
PQ∂NΛ

PV Q +

(
λ (V )− 1

2

)
∂NΛ

NV M , (2.6)

where the Y -tensor for E7(7) is given in terms of its generators in the fundamental representation and
an antisymmetric invariant ΩMN :

Y MN
PQ =−12(tα)

MN(tα)PQ−
1
2

Ω
MN

ΩPQ . (2.7)

The index α = 1, . . . ,133 labels the adjoint representation. We may thus solve the section condition
(2.4) by demanding

(tα)MN
∂M⊗∂N = Ω

MN
∂M⊗∂N = 0 (2.8)

The antisymmetric matrix ΩMN is a weighted symplectic matrix [50], related to the symplectic
matrix Ω̃MN that it inherits from Sp(56)⊃ E7(7) by ΩMN = e−∆Ω̃MN . Our conventions are to raise
and lower fundamental indices with ΩMN ,ΩMN via

V M = Ω
MNVN , VM =V N

ΩNM, ΩMPΩ
NP = δ

N
M , (2.9)

from which it follows that (tα)MN := (tα)M
PΩPN = (tα)NM. For other relations of the generators,

we refer the reader to [19]. This symplectic structure is compatible with the EFT structure such that

LΛΩMN = 0, M MN = Ω
MP

Ω
NQMPQ (2.10)

where MMN is the generalised metric parametrising the coset (E7(7)×R+)/SU(8). The remaining
fields of this theory are given by

{gµν ,MMN ,Aµ
M,Bµν ,α ,Bµν

M} , (2.11)

where gµν is the external metric (µ,ν = 1, . . . ,4) and Bµν• are auxiliary gauge fields, required
to covariantise the field strength of the generalised gauge fields Aµ

M. In the absence of internal
potentials, and in the M-theory frame (i.e. decomposing under GL(7)), the generalised metric, with
internal potentials set to zero, is given solely in terms of the 7-dimensional internal metric gmn

(determinant g(7)) as

MMN = e−∆ diag[g
1
2
(7)gmn;g

1
2
(7)g

mn,pq;g−
1
2

(7) gmn;g−
1
2

(7) gmn,pq] , (2.12)

7The R+ factor corresponds to the trombone symmetry of supergravity—an extra off-shell scaling symmetry of
supergravity Lagrangians, whose possible gaugings were worked out in [54]
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where m,n = 1, . . . ,7 and gmn,pq := gm[pgq]n. The gauge field Aµ
M has a naïve field strength,

Fµν
M = 2∂[µAν ]

M− JAµ ,AνKM , (2.13)

but this is not covariant under generalised diffeomorphisms. The full field strength is given by

Fµν
M = Fµν

M−12(tα)MN
∂NBµνα −

1
2

Ω
MKBµνK (2.14)

which satisfies the Bianchi identity in terms of the 3-form field strengths of the auxiliary fields

3D[µFνρ]
M =−12(tα)MN

∂NHµνρα −
1
2

Ω
MNHµνρN . (2.15)

Here, the covariant derivative is the Lie-covariantised derivative Dµ := ∂µ −LAµ
. Additionally, in

d = 4, there is an associated twisted self-duality relation of the field strength, given by

Fµν
M =−1

2
√
−g(4)εµνρσ gρλ gστ

Ω
MNMNKFλτ

K , (2.16)

where εµνρσ is the alternating symbol in four dimensions. This supplements the equations of motion
obtained from the pseudo-action

SE7(7) =
∫

d4xd56Y
(
LE-H +Lsc. +LY-M− e(4)V

)
+Stop. , e(4) =

√
−g(4) ,

LE-H =e(4)R̂

Lsc. =
1

48
e(4)g

µνDµMMNDνM MN

LY-M =− 1
8

e(4)MMNF µνMFµν
N

V =− 1
48

M MN
∂MM KL

∂NMKL +
1
2
M MN

∂MM KL
∂KMNL

− 1
2

∂M ln |g(4)|∂NM MN− 1
4
M MN

∂M ln |g(4)|∂N ln |g(4)|−
1
4
M MN

∂Mgµν
∂Ngµν

Stop. =−
1
24

∫
d5x

∫
d56Y ε

µνρστFµν
MDρFστM .

(2.17)

3. A Novel Solution in E7(7)×R+ EFT

We are now equipped to discuss the non-geometric solution presented in [55]. It adds to a
growing list of solutions in DFT [40–44] and the various EFTs [45–47] in which a single solution in
the extended space reduces to a number of distinct solutions upon applying the section constraint.
This phenomenon can be thought of as a direct analogue of the remarkable unification of, for
example, the D4- and NS5A-branes in Type IIA string theory into the M5-brane of M-theory. The
only difference is that we have a much larger choice of ways in which one can ‘reduce’ the EFT
solution (not just transverse or longitudinal to the brane as in the case of the M5-brane). It is
hopefully self-evident that the number of branes a given EFT can unify is limited primarily by the
size of the extended space and we shall comment on this later in Section 5.

The solution presented here is a very close analogue of, what we shall call, the geometric
solution presented in [40] in which they also constructed a solution in E7(7) EFT (though one that

6
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M: PM M2 M5 KK6

IIA: WA F1A D0 D2 D4 D6 NS5A KK5A

IIB: WB F1B D1 D3 D5 D7 NS5B

KK5B

IIB: 0(1,6)4 B 16
4B 16

3 34
3 52

3 73 52
2B

IIA: 0(1,6)4 A 16
4A 07

3 25
3 43

3 61
3 52

2A KK5A

M: 0(1,7) 26 53 KK6

Figure 1: A comparison of the objects covered by the geometric solution [40] (backed by the orange hashing) and non-geometric solution (backed by
the green hashing) out of all the branes down to codimension-2 and 0≤ α ≤−2, as well as their M-theory lifts. Red lines denote T-duality, blue
lines denote lifts/reductions and black lines denote S-dualities.

7



P
o
S
(
C
O
R
F
U
2
0
1
8
)
1
3
8

Exotic Branes in Exceptional Field Theory R. Otsuki

covered the majority of the conventional branes) and we have summarised the set of branes that
each of these solutions covers is Figure 1. However, in order to understand the figure, we need to
clarify the notation. We adopt the same conventions that have become the standard for describing
exotic branes in the literature in which we refer to branes by the structure of their mass formulae,
given in terms of the radii of any internal directions that they wrap and the constants of string- or
M-theory, as follows

Type II : M(b(...,d,c)n ) =
. . .(Rk1 . . .Rkd )

3(R j1 . . .R jc)
2(Ri1 . . .Rib)

gn
s l1+b+2c+3d+...

s
, (3.1)

M-Theory : M(b(...,d,c)) =
. . .(Rk1 . . .Rkd )

3(R j1 . . .R jc)
2(Ri1 . . .Rib)

l1+b+2c+3d+...
p

. (3.2)

In the notation presented here, the familiar branes take on the following designations

F1 ←→ 10

Dp ←→ p1

NS5 ←→ 52

KK5 ←→ 51
2

(3.3)

WM ←→ 0
M2 ←→ 2
M5 ←→ 5

KK6 ←→ 61

(3.4)

Of these standard branes only the KK-monopoles in 10 and 11 dimensions have a distinguished
direction, namely the circle of the Hopf fibration, and it is this direction that appears quadratically in
the mass formula. We shall also, on occasion, annotate the names of the branes with the theory for
convenience e.g. the Kaluza-Klein monopole in Type IIA shall be denoted 51

2A.
The non-geometric solution itself is remarkably simple in form and we outline the ansatz

below. For the 4-dimensional external space, we adopt cylindrical coordinates plus time such that
xµ = (t,r,θ ,z) and the base external metric for both the M-theory and Type IIB section is taken to
be

gµν = diag[−(HK−1)
− 1

2 ,(HK)
1
2 ,r2(HK)

1
2 ,(HK−1)

1
2 ] = ĝµ̂ ν̂ , (3.5)

where H denotes the harmonic function in the r-θ plane and K is a function commonly defined for
codimension-2 exotic states

H(r) = h0 +σ ln
µ

r
, K = H2 +σ

2
θ

2 . (3.6)

Here, h0 and σ are constants and µ will become the charge of the objects. In all the solutions that
we obtain, gµν gets dressed and we shall denote the external metric of a particular solution with

a superscript e.g. in the 53 frame, we have g53

µν = (HK−1)
1
6 gµν . The exact prescription shall be

outlined shortly.
For the generalised metric, every solution that we obtain will not have any internal potentials

such that it is diagonal in every frame. Its 56 components are given by 27 components of (HK−1)
1
2 ,

27 components of (H−1)
− 1

2 and one component each of (HK−1)
3
2 and (HK−1)

− 3
2 . The latter two

directions will distinguish two of the internal directions. Because we consider an extra R+ factor,
we are afforded the flexibility of introducing an extra scale factor such that the combination of the
scale factor and internal metric in that frame is invariant in a manner that we shall clarify later.
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Finally, for the gauge fields, we take the auxiliary fields Bµν• = 0 and take Aµ
M to be

Aµ
M = (−H−1KaM, 0, 0,−K−1

θσ ãM) . (3.7)

The two generalised vectors aM and ãM determine the direction in which the vector points in the
internal space. Note that the duality condition (2.16) means that they are not actually independent.
It is straightforward to verify that its field strength (which reduces to the Abelian field strength under
this ansatz) also satisfies the Bianchi identity (2.15).

3.1 An Example: Rotating the 53 to the 26

To find the M-theory branes we first decompose under GL(7). If the usual internal coordinates
are given by

ym = (ξ ,χ,wa) = (Y ξ ,Y χ ,Y a) , a = 1, . . . ,5 , (3.8)

the 56 extended coordinates are split into

Y M = (Y ξ ,Y χ ,Y a;Yξ χ ,Yξ a,Yχa,Yab;YξYχ ,Ya;Y ξ aY χa,Y ab) . (3.9)

For the generalised metric, we seek some particular frame M which admit an external metric gM
µν and

a 7-dimensional internal metric gM
mn such that MMN conforms with the structure (2.12) according to

MMN =
∣∣∣g53

(4)

∣∣∣− 1
4

diag[g53

mn;gmn,pq
53 ;(g53

(7))
−1

gmn
53 ;(g53

(7))
−1

g53

mn,pq]

=
∣∣∣g26

(4)

∣∣∣− 1
4

diag[g26

mn;gmn,pq
26 ;(g26

(7))
−1

gmn
26 ;(g26

(7))
−1

g26

mn,pq]

=
∣∣∣g0(1,7)

(4)

∣∣∣− 1
4

diag[g0(1,7)
mn ;gmn,pq

0(1,7)
;(g0(1,7)

(7) )
−1

gmn
0(1,7) ;(g

0(1,7)
(7) )

−1
g0(1,7)

mn,pq]

=
∣∣∣gKK6

(4)

∣∣∣− 1
4

diag[gKK6
mn ;gmn,pq

KK6 ;(gKK6
(7) )

−1
gmn

KK6;(gKK6
(7) )

−1
gKK6

mn,pq] ,

...

(3.10)

where the ellipsis denotes analogous decompositions for the Type IIA/B branes that we obtain.
Similarly, the generalised vector Aµ

M splits into

Aµ
M → (Aµ

m,Aµ,mn,Aµm,Aµ
mn) . (3.11)

When non-zero, the first and third of these will be re-interpreted as a (conventional) Kaluza-Klein
vectors and dual graviton components whilst the remaining components will source the cross-sector
M-theory potentials Aµmn ∼ Aµmn and Aµ

mn ∼ εmnp1...p5Aµ p1...p5 .
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As an example, we consider the rotation from the 53 frame to the 26 frame. We begin with the
generalised metric

MMN = |g(4)|−
1
4 diag[(HK−1)

1
2 ,(HK−1)

1
2 ,(HK−1)

− 1
2 δ(5);

(HK−1)
− 3

2 ,(HK−1)
− 1

2 δ(5),(HK−1)
− 1

2 δ(5),(HK−1)
1
2 δ(10);

(HK−1)
− 1

2 ,(HK−1)
− 1

2 ,(HK−1)
1
2 δ(5);

(HK−1)
3
2 ,(HK−1)

1
2 δ(5),(HK−1)

1
2 δ(5),(HK−1)

− 1
2 δ(10)]

(3.12)

=

[
(HK−1)

− 1
6 |g(4)|−

1
4

]
︸ ︷︷ ︸∣∣∣g53

(4)

∣∣∣− 1
4

diag[(HK−1)
2
3 ,(HK−1)

2
3 ,(HK−1)

− 1
3 δ(5);

(HK−1)
− 4

3 ,(HK−1)
− 1

3 δ(5),(HK−1)
− 1

3 δ(5),(HK−1)
2
3 δ(10);

(HK−1)
− 1

3 ,(HK−1)
− 1

3 ,(HK−1)
2
3 δ(5);

(HK−1)
5
3 ,(HK−1)

2
3 δ(5),(HK−1)

2
3 δ(5),(HK−1)

− 1
3 δ(10)] .

(3.13)

The first line shows the components of the generalised metric as described above (3.7) whilst the
second line is the form specialised to the 53 frame. One may verify that this is indeed consistent
with the form (2.12) if one identifies

g53

mn = diag[(HK−1)
2
3 ,(HK−1)

2
3 ,(HK−1)

− 1
3 δ(5)] , (3.14)∣∣∣g53

(4)

∣∣∣− 1
4 :=

[
(HK−1)

− 1
6 |g(4)|−

1
4

]
⇒ g53

µν = (HK−1)
1
6 gµν . (3.15)

In this frame, we choose the potentials to point outside of the section such that they source the
cross-sector potentials of the 53 according to

At
ξ χ =−H−1K , (3.16)

Az,ξ χ =−K−1
θσ . (3.17)

Upon taking section, we may combine the data to end up with the background of the 53-brane

ds2
53 = (HK−1)

− 1
3 (−dt2 +d~w2

(5))+(HK−1)
2
3 (dz2 +dξ

2 +dχ
2)+H

2
3 K

1
3 (dr2 + r2dθ

2) ,

A(3) =−K−1
θσdz∧dξ ∧dχ , A(6) =−H−1Kdt ∧dw1 . . .∧dw5 .

(3.18)

If we apply the rotation Y m↔ Ym,Ymn↔ Y mn, and reshuffle various factors of (HK−1), we obtain
the generalised metric

MMN =

[
(HK−1)

1
6 |g(4)|−

1
4

]
diag[(HK−1)

− 2
3 ,(HK−1)

− 2
3 ,(HK−1)

1
3 δ(5);

(HK−1)
4
3 ,(HK−1)

1
3 δ(5),(HK−1)

1
3 δ(5),(HK−1)

− 2
3 δ(10);

(HK−1)
1
3 ,(HK−1)

1
3 ,(HK−1)

− 2
3 δ(5);

(HK−1)
− 5

3 ,(HK−1)
− 2

3 δ(5),(HK−1)
− 2

3 δ(5),(HK−1)
1
3 δ(10)] .

(3.19)

10
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One may verify that this is consistent with the following identifications of the internal and external
metrics in the 26 frame:

g26

mn = diag[(HK−1)
− 2

3 ,(HK−1)
− 2

3 ,(HK−1)
1
3 δ(5)] , (3.20)∣∣∣g26

(4)

∣∣∣− 1
4 :=

[
(HK−1)

1
6 |g(4)|−

1
4

]
⇒ g26

µν = (HK−1)
− 1

6 gµν . (3.21)

The components of the generalised vector gets interchanged and we end up with the background of
the 26-brane

ds2
26 = (HK−1)

− 2
3 (−dt2 +dξ

2 +dχ
2)+(HK−1)

1
3 (dz2 +d~w2

(5))+H
1
3 K

2
3 (dr2 + r2dθ

2) ,

A(3) =−H−1Kdt ∧dξ ∧dχ , A(6) =−K−1
σθdz∧dw1∧ . . .∧dw5 .

(3.22)

One may similarly find consistent rotations of the generalised metric that give the KK6 and 0(1,7),
the details of which can be found in [55]. We summarise the M-theory brane configurations that we
may obtain in Table 1.

t r θ z ξ χ wa

53 ∗ • • ◦ ◦ ◦ ∗
26 ∗ • • ◦ ∗ ∗ ◦
0(1,7) ∗ • • ◦ � ◦ ◦
KK6 ∗ • • � ◦ ∗ ∗

Table 1: The configuration of M-theory branes that we consider. Asterisks ∗ denote worldvolume
coordinates, empty circles ◦ denote smeared transverse coordinates and filled circles • denote
coordinates that the harmonic function depends on. Finally, � denotes an otherwise distinguished
direction; the Hopf fibre for the monopole and the quadratic direction for the 0(1,7)

3.2 Reduction to IIA Solutions

The IIA limit of EFTs is not really a distinct solution to the section constraint, being obtained
from a circle compactification of M-theory, and so it is not really surprising that we may also
obtain exotic branes of the Type IIA theory. Nevertheless, we briefly cover how they arise in the
non-geometric solution. We take the reduction in the internal space and decompose the 7 coordinates
into ym = (ym̌,η) such that the extended coordinates are indexed by

Y M = (Y m̌,Y η ;Ym̌ň,Ym̌η ;Ym̌,Yη ;Y m̌ň;Y m̌η) . (3.23)

Working in the Einstein frame8, the internal metric decomposes to

gM
mn = diag[e−

φ

6 ǧA
m̌ň,e

4φ

3 ] , gM
(7) = e

φ

3 ǧA
(6) , (3.24)

8One can also work in the string frame if so preferred—this is detailed in [55].
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which induces a decomposition of the generalised metric

MMN = e
φ

6

∣∣∣ǧA
(4)

∣∣∣− 1
4︸ ︷︷ ︸

from |gM
(4)|
− 1

4

diag[e−
φ

6 ǧA
m̌ň,e

4φ

3 ;e
φ

3 gm̌ň,p̌q̌
A ,e−

7φ

6 gm̌ň
A ;

e−
φ

6 ǧA
(6)
−1ǧm̌ň

A ,e−
5φ

3 ǧA
(6)
−1;e−

2φ

3 ǧA
(6)
−1ǧA

m̌ň,p̌q̌,e
5φ

6 ǧA
(6)
−1ǧA

m̌ň] .
(3.25)

where we have denoted the internal and external metrics in a particular IIA frame with a super-
script/subscript A in analogy with the M-theory section before. Since the reduction is in the internal
space, the external metric is unaffected and takes on the same numerical values as the M-theory case
ǧµ̌ ν̌ ≡ gµν . The EFT vector decomposes to

Aµ
M → (Aµ̌

m̌,Aµ̌
η ;Aµ̌,m̌ň,Aµ̌,m̌η ;Aµ̌,m̌,Aµ̌,η ;Aµ̌

m̌ň,Aµ̌
m̌η). (3.26)

As before, the Aµ̌
m̌ and Aµ̌,m̌ components sources the KK-vector in this 4+6 split and the dual

graviton. Of the remaining components, the R-R potentials C(1),C(3),C(5) and C(7) are encoded in
the components Aµ̌

η ,Aµ̌,m̌ň,Aµ̌
m̌ň and Aµ̌η respectively (where the latter two are to be dualised on

the internal space) and the NS-NS potentials B(2) and B(6) are held in Aµ̌,ηm̌ and Aµ̌
ηm̌.

The different reductions that one can be obtained from a given M-theory section is determined
by the direction that one takes the reduction η . For example, if we take η in either ξ or χ , one may
verify that the data

e
4φ

3 = (HK−1)
2
3 , (3.27)∣∣∣ǧ52

2A
(4)

∣∣∣− 1
4
= (HK−1)

− 1
4 |ǧ(4)|

− 1
4 ⇒ ǧµ̌ ν̌ = (HK−1)

1
4 ǧµ̌ ν̌ , (3.28)

ǧ52
2A

m̌ň = diag
[
(HK−1)

3
4 ,(HK−1)

− 1
4 δ(5)

]
, (3.29)

recombined in the form (3.25), recovers the generalised metric in the 53 frame. Likewise the EFT
vector decomposes as described above and we obtain the 52

2A background in the Einstein frame

ds2
52

2A,E = (HK−1)
− 1

4
(
−dt2 +d~w2

(5)

)
+(HK−1)

3
4
(
dz2 +dχ

2)+H
3
4 K

1
4
(
dr2 + r2dθ

2) ,
B(2) =−K−1

θσdz∧dχ , B(6) =−H−1Kdt2∧dw1∧ . . .∧dw5 ,

e2(φ−φ0) = HK−1 .

(3.30)

The other inequivalent reduction of the 53 is obtained by choosing the reduction to be along
η = w5 ≡ v. Similarly, the other backgrounds given in Table 1 reduce to the Type IIA brane
configurations described in Table 2.

3.3 The IIB Section

The IIB section is the only other inequivalent solution to the section condition. It is obtained
by first decomposing the 56 of E7(7) under GL(6)×SL(2) to single out the 6 directions that are to
combine with the 4 external directions. In this section, and in the absence of any internal potentials,
the generalised metric takes the form

MMN = |ĝ(4)|
− 1

4 diag[ĝm̂n̂; ĝm̂n̂
γ̂

α̂β̂ ; ĝ−1
(6)ĝm̂k̂ p̂,n̂k̂q̂; ĝ−1

(6)ĝm̂n̂γ̂
α̂β̂

; ĝ−1
(6)ĝ

m̂n̂], (3.31)
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wa

Parent t r θ z ξ χ ua v

53 52
2A ∗ • • ◦ × ◦ ∗ ∗

43
3 ∗ • • ◦ ◦ ◦ ∗ ×

26 25
3 ∗ • • ◦ ∗ ∗ ◦ ×

16
4A ∗ • • ◦ × ∗ ◦ ◦

0(1,7)
0(1,6)4 A ∗ • • ◦ � ◦ ◦ ×
07

3 ∗ • • ◦ × ◦ ◦ ◦

KK6
61

3 ∗ • • ◦ × ∗ ∗ ∗
KK5A ∗ • • � ◦ ∗ ∗ ×

Table 2: The configuration of the Type IIA branes that we consider. A cross × denotes the direction
that is being reduced on. Note that one cannot obtain the D6 as a reduction of the KK6A in this
solution as the fibre lies in the external space. This is a limitation of the solution rather than of the
EFT itself.

where m̂, n̂ = 1, . . . ,6 index the Type IIB section and α̂, β̂ = 1,2 are SL(2) indices. Here, we also
have ĝm̂k̂ p̂,n̂l̂q̂ := ĝm̂[n̂|ĝk̂|l̂|ĝp̂|q̂]. Finally,

γ̂
α̂β̂

=
1

Imτ

(
|τ|2 Reτ

Reτ 1

)
. (3.32)

is the SL(2) metric parametrised in terms of the axio-dilaton τ = C(0)+ ie−φ . The base external
metric remains the same as before ĝµ̂ ν̂ ≡ gµν and all the external metrics of the IIB solutions will
again be proportional to it. The EFT vector splits under this subgroup as

Aµ
M → (Aµ̂

m̂,Aµ̂,m̂α̂ ,Aµ̂
m̂k̂ p̂,Aµ̂

m̂α̂ ,Aµ̂,m̂). (3.33)

These will variously source KK-vectors, dual graviton components and potentials. In particular, the
SL(2) index on the components Aµ̂m̂α̂ and Aµ̂

m̂α̂ will distinguish between the types of potentials for
the 2-form and 6-forms. When α̂ = 1, the potential is an R-R potential C(p) whilst when α̂ = 2, it
sources an NS-NS potential B(p). As one might expect, S-dual solutions are given by the interchange
1↔ 2 in the solution. Finally Aµ̂

m̂k̂ p̂, once dualised on the internal space, sources only the R-R
4-form which is a singlet under S-duality and so does not carry an SL(2) index.

We shall not go into much detail of the correspondence between the coordinates of the M-theory
section and the Type IIB section but we shall mention that the 5 coordinates wa in the M-theory
section enter directly into the IIB section but the final coordinate of the IIB section comes from
what was one of the wrappings modes in the M-theory section (recall that taking all 6 coordinates
to descend directly from the M-theory section gave the IIA section). We shall denote the Type IIB
section coordinates as ŷm̂ = (ζ ,wa).

Then it is possible to find a set of background fields (ĝB
µ̂ ν̂
, ĝB

m̂n̂,τ) such that, when rearranged
into the form (3.31), gives the generalised metric according to (3.10). We work through all the
cases in detail in [55], to which we point the interested reader but, for now, summarise the brane
configurations that one obtains in Table 3.
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wa

t r θ z ζ ω w̄ā

¯
w¯

a

52
2B ∗ • • ◦ ◦ ∗ ∗ ∗

52
3 ∗ • • ◦ ◦ ∗ ∗ ∗

34
3 ∗ • • ◦ ◦ ∗ ◦ ∗

16
3 ∗ • • ◦ ◦ ∗ ◦ ◦

16
4B ∗ • • ◦ ◦ ∗ ◦ ◦

0(1,6)4 B ∗ • • ◦ ◦ ◦ ◦ ◦
KK5B ∗ • • � ∗ ◦ ∗ ∗

Table 3: The configuration of the Type IIB branes that one may construct.

4. Other Exotic Branes

In the previous section, we described an explicit example of an EFT accommodating exotic
branes. This notion is not new in itself, being known from the DFT monopole which was shown to
include the exotic ‘Q-brane’ (smeared 52

2) and ‘R-brane’ (smeared 52
3) [42, 43], or SL(5) EFT [47].

The number of such branes that one can describe in a single solution is EFT is obviously limited by
the size of the internal space of the theory that one is working with. Moving on to larger exceptional
groups, at E8(8), the wrapping modes of the codimension-2 exotic states that we described earlier
are required to extend the space to accommodate ρ1 = 248 of E8(8) EFT. Whilst we are unable
to give a concrete description of what new branes one should be able to describe, it is expected
that we should be able to include at least those described in [56] that were obtained by examining
the multiplet structure of E8(8) explicitly. However, when we transition to the infinite-dimensional
Kac-Moody algebras (in particular E9(9) and E11), it becomes obvious that even these are not enough.
We need many more—infinitely more in fact—in order to source all the wrapping directions that
these theories require.

Additionally, a conspicuous omission in the above discussion are the D8, D9 branes in 10
dimensions, as well as the lift of the former to M-theory9 called the KK8M which have been
speculated to exist for a while. These are very poorly understood codimension-1 and codimension-0
states with their signature pathological asymptotic behaviours. At codimension-2 we have the S-dual
of the D7-brane, which we call the 73 (also known as the NS7 in the literature), whose T-duals are
rarely even mentioned in the literature.

With these points in mind, it is pertinent to ask what are the full set of possible branes that one
expects to find in Type II string theory or M-theory. In this section, we give a simple method to
generate all the possible branes at every power of gs by recursively applying a simple algorithm to
the mass formulae of the objects. Studying the mass formulae of the standard branes, it is easy to

9This object has also been referred to as the M9 in the literature. However, we shall see that it is actually more like a
KK-monopole than a M5-brane, given the mass designation 8(1,0), which is why we have opted to call it the KK8M.
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verify that duality-related objects have their masses transform according to the following rules:

Ty : Ry 7→
l2
s

Ry
, gs 7→

ls
Ry

gs , (4.1)

S : gs 7→
1
gs
, ls 7→ g

1
2
s ls . (4.2)

Note that T-duality preserves the power of gs of the branes, as can be seen in the D-brane chain in
which all objects scale as g−1

s in the string frame. On the other hand, S-duality changes the gs scaling
such as in the (71,73) doublet. In addition to this, we have the Type IIA–M-theory correspondence
in which one object in M-theory can descend to multiple objects in Type IIA. If the object has only a
simple structure, such as an M5, then the only inequivalent reductions are along the worldvolume of
the brane or transverse to the brane (after an appropriate smearing to generate an isometry) and so
we end up with only the 41 or 52 respectively. However, with a more complicated structure such as a
61M, we may reduce in three ways (along the worldvolume, transverse to the brane and along the
fibre) to obtain a 61A,51

2A and the exotic 61
3A branes. All of these oxidations/reductions can be read

off from the mass formulae simply by relating the M-theory constants to the Type IIA constants

ls =
l

3
2
p

R
1
2
\

gs =
(

R\

lp

) 3
2

↔
R\ = lsgs

lp = g
1
3
s ls

. (4.3)

The algorithm that we propose to generate all the possible branes is the following:

• Apply S-duality (4.2) to every Type IIB object to give a new object in Type IIB

• Apply T-duality (4.1) to every Type IIA/B object to give a new object in type IIB/A

• Lift every Type IIA object by (4.3) to give a new object in M-theory

• Reduce every M-theory object by (4.3) in every possible inequivalent direction to give multiple
objects in IIA

Doing so generates a whole web of dualities that extends far beyond the conventional geometric
sector. If one were to blindly apply these rules in the conventional string- or M-theory interpretations,
then they would inevitably lead to dualising or reducing along non-isometric directions. However,
within the framework of ExFT, every such transformation is permissible since the symmetry-
generating transformations that we apply are blind to whether the directions being acted on are
isometries or not—they simply rotate the coordinate dependence in and out of the physical spacetime.

The possibility of objects having a dependence on coordinates outside of the physical spacetime
has been given an interpretation in string- and M-theory in the context of the GLSM in which a
collection of works studying worldsheet instanton effects on the 5-brane chain [44,57–60] concluded
that a dependence on winding modes is indicative of worldsheet instanton corrections. It is expected
that this correspondence holds much more generally, and that wrapping mode dependences will
analogously correspond to some instanton effects on the worldvolume. We hope that this is within
reach of verifiability with current techniques.
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This opens up the intriguing possibility of short-circuiting the rather laborious path taken
in conventional discussions. Rather than having to smear a direction in the harmonic function,
dualise along the isometry and then calculate the worldsheet instanton corrections to obtain the full
geometry, ExFT may allow us to generate the full dual picture by allowing for winding/wrapping
mode dependences from the start. Using these arguments the R-monopole, whose existence had
long been speculated but whose construction had been hampered by the lack of isometries to dualise
along, was constructed as a solution within the DFT monopole and the resultant background was
confirmed to source an R-flux.

The novel contribution by ExFT is then that one should be able to construct non-trivial
codimension-0 objects by rotating all coordinate dependences out of the physical section. Such
states are impossible to describe in string- and M-theory as the only space-filling branes in that
context must necessarily be trivial. However, the codimension-0 states that ExFT allows for have
trivial structure on the spacetime that they span but non-trivial structure on the wrapping coordinates
which we reinterpret as worldsheet instanton corrections upon taking section, as per the GLSM. The
dependence on wrapping coordinates necessarily precludes even a locally geometric description and
is thus a more general class of non-geometric objects.

Having argued that the algorithm given above is valid in the context of ExFT, with a possible
interpretation given in string- and M-theory, we follow it to its natural conclusion. Amongst all
the branes that one can generate, we find all the branes that have appeared in the literature either
directly, or through the mixed symmetry potentials that they couple to. For example, we generate
all of the branes that couple to the mixed-symmetry potentials that appear in [56, 61–64]. More
concretely, one may conduct an exhaustive search of all the branes that would be generated down to
any power of gs. We tabulate the number of distinct10 branes N(α) that one finds at all powers down
to α = −25 in 10 dimensions, as well as all the branes in M-theory that are required to describe
them, in Table 4.

For the fourth column we have split N(α) into the number of branes that appear only in Type IIA
(denoted A), the number of branes that appear only in Type IIB (denoted B) and the number of branes
that appear in both theories (denoted C). If N(α) splits cleanly into A = B = N(α)/2, this means that
every brane appears only in either one of the theories. The D-branes at α =−1 follow this pattern,
since Type IIA/B respectively contain only even/odd D-branes, and we consequently designate that
power of gs to be of ‘R-R’ type. Conversely, if A = B = 0, then all the branes are common to both
IIA/B and we give the designation ‘NS-NS’. This is seen, for example, at α =−2 with two copies
of the 5-brane chain 52A/B T←→ 51

2B/A T←→ 52
2A/B T←→ 53

2B/A T←→ 54
2A/B. In the language of DFT, the

first four are the branes that couple to the generalised fluxes FAB
C = {Habc, fab

c,Qa
bc,Rabc} but the

final object is a less familiar codimension-0 brane called the 54
2 (whose flux necessarily vanishes).

This has already been proposed to exist in [44] where it was presented as one of the possible solution
embedded in the DFT monopole.

Looking at Table 4, we see a clear pattern; when n is odd, the set of branes is of R-R type.
Additionally, when n = 2 mod 4, the branes are of NS-NS type. However, the situation is more
complicated when n = 0 mod 4. These powers of gs are predominantly of NS-NS type but there is
a comparatively small set of branes at those powers that break this pattern, and we have denoted

10We count the same brane appearing in both theories, such as the NS5A/B as different objects.
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this the ‘NS-NS violation’ in the final column. It is expected that these powers of gs will house
predominantly NS-NS orbits, with only a small number of R-R orbits breaking the pattern. The
first instance occurring at α =−4, contains only 3 orbits, 2 of which are NS-NS and the final one
being R-R as seen in the orbits presented in [55]11. Particularly striking is how the number of branes
grows steadily as the power of gs decreases to ever more non-perturbative branes powers of gs.
Indeed, there is no indication that this will ever terminate and so we expect an infinite number of
such exotic states which form obvious candidates for supplying the wrapping coordinates of the
infinite-dimensional ExFTs.

In [55], these webs were separated out into finite T-duality orbits for the cases α ≥ −7 (the
lowest power of gs that one expects to find in E7(7) EFT). Each orbit is characterised by a definite gs

scaling and are related to orbits of differing gs-scaling by S-duality and/or sharing common lifts in
M-theory. For example, at g−7

s , the 210 branes falling into 5 distinct T-duality orbits.

5. Discussion

We have already hinted in the main text that there may be more notions of non-geometry than
one might first imagine. The first signs of non-geometry are the globally non-geometric objects, of
the type that we started our discussion, such as the Q-monopole (smeared 52

2). Whilst a globally
geometric description eludes us as their patching generically require duality transformations, as
well as the conventional diffeomorphisms and gauge transformations, one can still construct local
descriptions of these objects through the supergravity fields and these are may be considered as
realisations of the T-folds and U-folds proposed by Hull.

The second class of non-geometric objects are those that are locally non-geometric. These are
backgrounds that require a dependence on coordinates outside of the usual spacetime to describe
and thus lack even a local description in terms of conventional supergravity. It is hopefully obvious
that all the codimension-0 branes that we have argued must exist must necessarily be of this type.
What is less obvious is that higher codimension objects can also be non-geometric in this sense—the
prime example being the 53

2 brane (indeed, this is the context in which this type of non-geometry
was first discussed). Explicit construction of the background shows that the structure of the fields
necessitates a dependence on at least one winding mode if the solution is to remain non-trivial.
As discussed previously, we expect the winding mode dependence to be interpreted as worldsheet
instanton corrections in the conventional supergravity lore. As such, the vast majority of the branes
that we recorded are expected to be of this type.

To these, we add a final type of non-geometry that we shall refer to as, ‘truly non-geometric
backgrounds’—backgrounds that are not related to any geometric background by duality trans-
formations, thus forming entirely disconnected orbits. The very nature of how we generated our
non-geometric backgrounds prevents us from probing such backgrounds and it is not obvious how
one might go about constructing such backgrounds as their structure is completely unknown. Indeed,
it is not clear if such examples even exist and it remains an open question if there are even more
objects outside of the ones we have found.

11In fact these 10 branes violating full NS-NS correspond to a T-duality chain that mirrors the D-brane chain but
headed by the 94 (the S-dual of the D9 = 91 brane) rather than the 91.
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α Number of Branes N(α) Type Breakdown N(α) = A+B+2C
NS-NS Violation

A+B

0 4 (NS-NS) 4 = 0 + 0 + 2 × 2 0
-1 10 R-R 10 = 5 + 5
-2 10 NS-NS 10 = 0 + 0 + 2 × 5
-3 24 R-R 24 = 12 + 12
-4 46 46 = 5 + 5 + 2 × 18 10
-5 72 R-R 72 = 36 + 36
-6 104 NS-NS 104 = 0 + 0 + 2 × 52
-7 210 R-R 210 = 105 + 105
-8 280 280 = 12 + 12 + 2 × 128 24
-9 448 R-R 448 = 224 + 224
-10 632 NS-NS 632 = 0 + 0 + 2 × 316
-11 942 R-R 942 = 471 + 471
-12 1244 1244 = 36 + 36 + 2 × 586 72
-13 1926 R-R 1926 = 963 + 963
-14 2340 NS-NS 2340 = 0 + 0 + 2 × 1170
-15 3398 R-R 3398 = 1699 + 1699
-16 4378 4378 = 105 + 105 + 2 × 2084 210
-17 5942 R-R 5942 = 2971 + 2971
-18 7316 NS-NS 7316 = 0 + 0 + 2 × 3658
-19 10050 R-R 10050 = 5025 + 5025
-20 12252 12252 = 224 + 224 + 2 × 5902 448
-21 16134 R-R 16134 = 8067 + 8067
-22 19388 NS-NS 19388 = 0 + 0 + 2 × 9694
-23 25320 R-R 25320 = 12660 + 12660
-24 30374 30374 = 471 + 471 + 2 × 14716 942
-25 38310 R-R 38310 = 19155 + 19155

M 458124

Table 4: Number of branes in each theory down to g−25
s , as well as the total number of branes required in M-theory to accommodate all of them.
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