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1. Introduction

Among solutions of supergravity equations of motion one finds brane backgrounds, which
preserve half of the total amount of supersymmetry. These are described by non-trivial metric and
gauge fields sourced by the corresponding fundamental objects of string or M theory [1]. Despite
the name, string theory contains information about dynamics of all such extended objects, which
include D-branes, NS5-brane and the KK-monopole. These are usually dubbed the standard branes
as opposed to the so-called non-standard or exotic branes that are related to the standard ones by
T- and S-duality transformations1 [2, 3, 4].

T-duality is a symmetry of the closed string on a torodial background rotating string wind-
ing and momentum modes into each other. For a torus Td the rotation group is O(d,d), which
contains global coordinate transformations and constant B-shifts in addition to actual T-duality
transformations. At the level of supergravity T-duality is a solution generating transformation and
is allowed to act along isometries of a background. The corresponding transformation of the back-
ground is encoded in the so-called Buscher rules [5, 6]. A relevant example would be the T-duality
transformation of the background of smeared NS5-brane along the transverse isometry direction,
which gives the KK5-monopole background. The isometry direction of the NS5-brane becomes
the special cycle of the monopole (Hopf fibre). Smearing the KK-monopole along a transverse

0 1 2 3 4 5 6 7 8 9
NS5=50

2 × × × × × × · · · ·
KK5=51

2 × × × × × × � · · ·
52

2 × × × × × × � � · ·
53

2 × × × × × × � � � ·
54

2 × × × × × × � � � �

Table 1: T-duality orbit of the NS5-brane. Here × denote worldvolume directions of the brane, dots ·
denote transverse directions, which enter into dependence of the harmonic function of the corresponding
background. Doted circle � denotes special directions, which encode non-trivial monodromy around a
brane.

direction and further applying T-duality transformation one arrives at a configuration of metric and
Kalb-Ramond field which is not globally well defined. That is, the background has non-trivial
monodromy when going around the brane positioned at the singularity, and the solution is defined
only up to a T-duality transformation and is described by T-folds [7, 8]. Such non-geometric back-
grounds are understood as sourced by exotic (or non-standard) branes, in this case, the 52

2-brane
[4]. The notation bα

c comes from the classification of states of half-maximal D = 3 supergravity,

1Strictly speaking KK-monopole should also be referred to as a non-standard brane as it has a special direction
realized by the Hopf cycle.
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which correspond to completely wrapped branes of co-dimension ≥ 2. Mass of a state bα
c will be

Mbα
c =

R1 . . .RbR2
b+1 . . .R

2
b+c

gα
s l1+b+2c

s
, (1.1)

where gs is the string coupling constant, ls represents the Planck mass and Ri are radii of compact
directions. In other words, b gives the number of radii entering linearly and c gives the number
of radii entering quadratically. In the language of extended objects these are the radii wrapped
by worldvolume and special circles of the corresponding brane. Hence, the 52

2-brane has 5+1
worldvolume directions, 2 special (quadratic) directions and its tension is proportional to gs

−2. In
these notations the NS5-brane and KK5-monopole are denoted as 50

2 and 51
2 respectively.

As dynamical objects branes interact with gauge potentials appearing as magnetic duals of
the graviton and Kalb-Ramond field and/or their S/T-duals. The NS5-brane is known to interact
with the 6-form potential B(6) which is the magnetic dual of the Kalb-Ramon 2-form field (see
Section 2 for more details). Hence the brane interacts electrically with the 7-form field strength
H(7) and magnetically with the usual 3-form field strength H(3). Smeared NS5-brane sources the
background of the magnetic monopole which has only components Hmnz non-zero, where z is the
smearing direction. T-dualizing along z one arrives at the KK5-monopole, fro which the Kalb-
Ramond field vanishes B = 0 and the background is described completely in terms of space-time
metric as a 9+1-dimensional Taub-NUT solution [9]. The gauge field flux Hmnz gets transformed
into the geometric flux fmn

z. At the linearized level the latter can be understood as a proper field
strength given by a space-time 2-form taking values in 1-vectors. Following the same Hodge
dualization procedure as for the Kalb-Ramond field one concludes, that the corresponding gauge
potential is given by a (7,1) mixed symmetry tensor Am1...m7,n [10]. The additional condition here
is that the only non-vanishing components are those for which n equals to one of mi’s. One writes
then for the field strength fmn

z = gzpFmn,p

Fmn,p = εmn
m1...m8∂m1Am2...m8,p. (1.2)

Note that we are working here at the linearized level. Similarly, Q-flux Qm
pq and R-flux Rmnp

can be understood as field strengths for the (8,2) and (9,3) gauge potentials respectively. These
interact with the 52

2 and 53
2 branes. The case of co-dimension-0 brane 54

2 is subtle as one does not
have enough coordinates do define field strength as derivative of a (10,4) potential, and should be
addressed in the framework of doubled space.

In the approach of conventional supergravity T-duality is a symmetry of toroidally compacti-
fied theory and is allowed to act only along isometric directions. This is relaxed in the T-covariant
approach of Double Field Theory, where T-duality transformations appear as a subset of local coor-
dinate transformation of the doubled space [11, 12] (for a review see [13, 14]). The doubled space
is parametrized by coordinates XM = (xm, x̃m), with xm being the normal coordinates and x̃m being
the dual coordinates corresponding to winding modes of the string. In the full O(10,10) DFT the
metric and Kalb-Ramond field are combined into an element of the coset space O(10,10)/O(1,9)×
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O(9,1) called generalized metric HMN and a T-duality scalar d =ϕ−1/4logdetg called the invari-
ant dilaton. The defining feature of the theory is that all fields are allowed to depend on all coordi-
nates XM, however subject to a special constraint, the section condition, which can be schematically
written as

η
MN

∂M⊗∂N = 0. (1.3)

Here ηMN is the invariant tensor of O(10,10) which is normally taken in the light-cone basis

η
MN =

[
0 1
1 0

]
. (1.4)

This tensor is also used to raise and lower indices. The section constraint is necessary to ensure
closure of algebra of generalized Lie derivatives defining an analogue of diffeomorphisms in dou-
bled space [15]. A finite version of coordinate transformation in doubled space is also available
[16, 17].

Since fields of DFT are allowed to depend maximally on the full set of ten (normal) coordi-
nates, nature of T-duality symmetry is very different for the conventional supergravity and DFT.
T-duality transformation in Double Field Theory in a direction x can be performed even if the direc-
tion is non-isometric, and is equivalent to replacing x by its dual x̃. Apparently, such transformation
is solution generating in DFT, however it gives solutions of normal supergravity only if x is an iso-
metric direction. For toroidal backgrounds both DFT and supergravity approaches give the same
results.

An illustrative example of this feature is provided by the T-duality orbit starting with the
NS5-brane, which is lifted into DFT as the so-called DFT monopole [18]. Considering a formal
expression ds2 =HMNdXMdXN and requiring its invariance under T-duality of DFT, one is able to
recover NS5-brane, KK5-monopole and the exotic branes 52

2, 53
2, 54

2 by properly replacing geomet-
ric coordinates by their duals [19, 20]. The important issue here is that the resulting backgrounds
do not have isometries along the would be special directions, instead, these are represented by
dependence on the corresponding dual coordinates. For example, the localized KK5-monopole
background is obtained from the full unsmeared NS5-brane background by replacing a transverse
coordinate z by its dual z̃. The resulting background is still a solution of DFT, however no longer
solves supergravity equations of motion. Nevertheless, the result still makes sense as precisely
the same background has been shown to arise after taking into account instanton correction to the
usual KK5-monopole background [21, 22, 19]. The same is true for other exotic branes of the
orbit, whose background fields will depend on 2,3 and 4 dual coordinates. This result has also been
checked by a direct calculation of instanton corrections [23, 24].

The same approach has been developed for the Exceptional Field Theory, which is the M-
theory counterpart of DFT [25, 26, 27, 28, 29, 30, 31]. In this approach exotic branes of M-theory
appear as a single object rotated in the full extended space with fields allowed to depend on non-
geometric coordinates [32, 33, 34] (for a short review of the classification of branes in the E7 theory
see [35]).

3
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In the covariant approach of DFT the background of the DFT monopole is sourced by an
extended object whose worldvolume action drops into that of the NS5-brane and KK5-monopolke
depending on the choice of embedding into the full doubled space. For the DBI action this has
been shown in [36] by introducing generalized Killing vectors that define charge of the object
for a given embedding and, more important, select isometric directions. Existence of isometries
is a direct consequence of the section constraint, which demands that one must choose whether a
background has isometry in the normal x or the dual x̃ space by defining the charge or, equivalently,
the generalized Killing vector. To couple such brane action to the field theory action of DFT one
must decide which coordinates in the DFT action are geometric and which are dual, then various
choices of the generalized Killing vectors will produce the corresponding localized (exotic) brane
backgrounds with proper dependence on dual coordinates.

In this contribution we briefly review the results of the work [37] where T-duality covariant
expressions for the Wess-Zumino terms for Dp-branes, NS 5-branes and α = 3,4 branes have been
presented. We start with details of the conventional supergravity approach to construction of gauge
invariant Wess-Zumino terms for D-branes and the NS5-brane in Section 2. Section 3 describes
construction of the T-duality invariant expression Wess-Zumino terms for α = 1 (D-branes) and
α = 2 branes. In this section embedding of a brane into the full doubled space is encoded in a gauge
fixing condition. Finally, in Section 4 we summarize the results, discuss further developments and
speculate around the topic.

2. Wess-Zumino terms and supergravity

The action for the Type IIB supergravity in the string frame can be written as

SIIB
RR =

1
2κ2

10

∫
M10

[
e−2φ

(
∗1R−4dφ ∧∗dφ +

1
2

H3∧∗H3

)
− 1

2
G2∧∗G2−

1
2

G4∧∗G4 +
1
2

dC3∧dC3∧B2

]
,

(2.1)

where κ10 is the gravitational coupling in ten dimensions, the gauge invariant field strengths G2,4

are defined as
G2 = dC2,

G4 = dC3 +H3∧C1
(2.2)

and the NS-NS field strength H3 = dB2. To end up with the democratic formulation of the theory
where the fields C1,C3 and their magnetic duals enter on equal footing, one starts with equations of
motion and Bianchi identities and interprets both as equations of motion following from a pseudo-
action. Hence, we write for the EoMs for the fields C1,C3

d ∗G2−H3∧∗G4 = 0,

d ∗G4−dC3∧H3 = 0.
(2.3)

4
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From the second line one concludes d(∗G4 +H3 ∧C3) = 0 and defining G6 = −∗G4 introduces
gauge potential C5 as

G6 = dC5 +H3∧C3. (2.4)

The same procedure for the first line gives definition of the gauge potential C7 and the correspond-
ing field strength

G8 = dC7 +H3∧C5. (2.5)

Altogether the gauge invariant RR field strengths and the corresponding Hodge dualizations can be
summarized as follows

Gp = dCp−1 +H3∧Cp−3,

∗Gp = (−1)
p
2 +1G10−p.

(2.6)

In the democratic formulation the Type IIB supergravity action for the RR fields is replaced by the
following pseudo-action

SpA
RR =

∫
M10

[
− 1

2
G2∧∗G2−

1
2

G4∧∗G4−
1
2

G6∧∗G6−
1
2

G8∧∗G8

]
, (2.7)

whose equations of motion give equations of motion for the fields C1,C3 and the corresponding
Bianchi identities upon the duality relations ∗Gp = (−1)

p
2 +1G10−p. Note that according to the

pseudo-action formalism the duality relation must be imposed only at the level of equations of
motion, since the action simply vanishes on this relation.

The field strengths Gp are invariant under gauge transformations of the RR fields

δCp = dλp−1 +H3∧λp−3. (2.8)

This leads to subtleties in definition of charge for a D-brane [38] and in turn to the Hanany-Witten
effect [39]. Such non-trivial gauge transformation of the RR field does not allow to write Wess-
Zumino term for a Dp-brane naively as

S(0)WZ =
∫

dp+1
ξCp+1, (2.9)

since it will not be gauge invariant. Indeed, under gauge transformation of Cp the action transforms
as

δS(0)WZ =
∫

dp+1
ξ H3∧λp−2, (2.10)

which suggests to add a term of the form B2∧Cp−1 to the initial action and to consider instead

S(1)WZ =
∫

dp+1
ξ

(
Cp+1 +B2∧Cp−1

)
. (2.11)

Pieces coming from transformation of the second term cancel the terms appeared at the previous
step, however generating new unwanted terms. Following the same logic it is straightforward to

5



P
o
S
(
C
O
R
F
U
2
0
1
8
)
1
3
9

Dynamics of branes in DFT Edvard T. Musaev

check that the Wess-Zumino action invariant under gauge transformations of the RR fields should
be of the form

S̃WZ =
∫

dp+1
ξ

[
eB2 ∧C

]
p+1− form

. (2.12)

Here we define the multiform C as the following formal sum of all RR fields of the theory

C =C1 +C3 +C5 +C7, (2.13)

and the resulting expression should be projected to the space of p+ 1 forms. Finally, one notices
that the action S̃WZ is not invariant under gauge transformations of the Kalb-Ramond field δB2 =

dŁ1. This is fixed along the same line as for the open string action, i.e. replacing B2 → F2 =

dA1 +B2, where A1 = Aαdξ α is the worldvolume 1-form interacting with open strings ending on
the D-brane transforming as

δA1 =−Ł1. (2.14)

Here B2 is understood as the worldvolume pull-back Bαβ dξ α ∧ dξ β of the target space 2-form.
Hence, the Wess-Zumino action for Dp-brane invariant under gauge transformations of both the
RR fields and the Kalb-Ramond field can be rendered as

SDp
WZ =

∫
dp+1

ξ

[
eF2 ∧C

]
p+1− form

. (2.15)

Similar procedure can be performed for B2 to recover its magnetic dual interacting with the
NS5-brane. One starts with equations of motion for the 2-form NS-NS field

d(e−2φ ∗H3)+d
(

C1∧G5−C3∧G4 +C5∧G5

)
= 0. (2.16)

Hence, the magnetic 7-form NS-NS flux is defined as H7 = e−2φ ∗H3 and the corresponding 6-form
gauge field B6 is defined by the field strength as

H7 = dB6−C1∧G5 +C3∧G4−C5∧G5, (2.17)

which is trivially invariant under gauge transformations δB6 = dŁ5. To ensure invariance under
gauge transformations of the RR fields one starts with the full gauge transformations of the mag-
netic 6-form defined as

δB6 = dŁ5 +λ0∧G6−λ2∧G4 +λ4∧G2. (2.18)

As in the case of D-branes the naive Wess-Zumino term for the NS5-brane S̃NS5
WZ =

∫
d6ξ B6 is not

gauge invariant under λp, instead its transformation reads

δ S̃NS5
WZ =

∫
d6

ξ

(
λ0∧G6−λ2∧G4 +λ4∧G2

)
. (2.19)

To fix this one needs to introduce extra worldvolume fields cp whose transformation rules are
defined as

δc0 =−λ0, δc2 =−λ2, δc4 =−λ4. (2.20)

6
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The fields cp interact with Dp-branes ending on the NS5-brane. Finally, in analogy with the world-
volume field strength F = dA+B2 of the NS-NS sector one defines field strengths

Gp = dcp +Cp +H3∧ cp−3, (2.21)

which are invariant under gauge transformations of the RR fields. Altogether this allows to define
gauge invariant Wess-Zumino term for the NS5-brane

SNS5
WZ =

∫
d6

ξ

(
B6−G1∧C5 +G3∧C3−G5∧C1

)
. (2.22)

Smearing the background of the NS5-brane generates an isometry direction along which a
T-duality transformation can be preformed. This leads to the background of the KK5-monopole
characterized by the geometric flux fmn

z, where z is the isometry direction and m,n 6= z. Following
the same dualization procedure as the one for the Kalb-Ramond field strength one arrives (at the
linearized level) at the gauge potential Bm1...m6,n, where n must be equal to one of the m’s. This is a
(7,1) mixed symmetry gauge field interacting with the KK5 monopole [10].

The same procedure can be done for the Wess-Zumino action of the NS5-brane to generate
that of the KK5-monopole [40]. Following the T-duality orbit further one generates Wess-Zumino
terms for the exotic branes 52

2 and 53
2 [41]. These interact with gauge potentials B8,2 and B9,3, hence

showing two and three special directions respectively. In O(d,d)-covariant theory these transform
as a rank-4 antisymmetric tensor multiplet and can be collected into components of a tensor DMNPQ

as
50

2 : Dmnpq = ε
mnpqm1...m6Bm1...m6 ,

51
2 : Dmnp

q = ε
mnpm1...m7Bm1...m7,q,

52
2 : Dmn

pq = ε
mnm1...m8Bm1...m8,pq,

53
2 : Dm

npq = ε
mm1...m9Bm1...m9,npq,

54
2 : Dmnpq = ε

m1...m10Bm1...m10,mnpq.

(2.23)

Here we also included the co-dimension-0 brane 54
2 for completeness. In the next Section we

describe the construction of the O(d,d) invariant expressions for D-branes and the NS5-brane
orbit, reviewing the work [37].

3. Invariant Wess-Zumino actions

3.1 D-branes

Upon T-duality transformations the background of a Dp-brane is mapped into the background
of D(p±1)-brane depending on the direction along which the transformation is performed. When
T-dualizing along a compactified transverse direction one produces a brane of one dimension larger,
and when dualizing along a wrapped worldvolume direction one produces a brane of one dimension
lower. This can be summarized in the following T-duality rules for the RR potentials

Cm1...mpz
Tz←→ Cm1...mp . (3.1)

7
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This implies that at the DFT language RR potentials can be written as an O(10,10) spinor [42]. For
that one introduces algebra of O(10,10) gamma matrices

{ΓM,ΓN}= 2ηMN . (3.2)

In the usual GL(10) decomposition this can be written as

{Γm,Γ
n}= 2δm

n. (3.3)

Introducing raising and lowering operators
√

2ψM = ΓM one defines Clifford vacuum |0〉as

ψm|0〉= 0. (3.4)

Hence, an O(10,10) spinor encoding all degrees of freedom coming from the RR gauge fields
Cm1...mp is defined as

C =
10

∑
p=0

1
p!

Cm1...mpψ
m1 . . .ψmp |0〉. (3.5)

The sum is performed along forms of all ranks and hence the spinor C describes both IIA and IIB
theory. Upon T-duality it transforms as

Tz : C→ ΓzC. (3.6)

Chirality of the spinor C and of the vacuum |0〉 can be fixed independently, and it is convenient to
fix chirality of C to be positive and choose chirality of |0〉 depending on whether we are in the IIA
or IIB theory. Apparently, such defined action of a T-duality transformation flips chirality of the
vacuum.

To construct an O(10,10) covariant expression for the gauge invariant field strengths Gp in this
language we will need to define the following Clifford element

SB = e−
1
2 BmnΓmΓn

=⇒ SB∂/SB
−1 =

1
6

HmnpΓ
mnp, (3.7)

where ∂/ = ΓM∂M. In what follows we will always impose the solution of the section constraint
∂̃ m = 0, and hence do not consider branes localized in the dual space2. Encoding the gauge transfor-
mation parameters λm1...mp in a DFT spinor λ in the same fashion, one writes gauge transformation
of C as

δC = ∂/λ +SB∂/SB
−1

λ . (3.8)

The gauge invariant field strength is then

G = ∂/C+SB∂/SB
−1C, (3.9)

which is a DFT spinor of chirality opposite to that of C.

2More comment on this in Section 4

8
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To encode the worldvolume gauge field A1 in this language it is convenient to start with the
case of the D9-brane, which is space-filling and hence the worldvolume coordinates can be gauge-
fixed to coincide with the space-time coordinates xm. In what follows we will always assume such
gauge fixing for the D-branes. This allows to introduce the gauge invariant Clifford algebra element
SF in analogy with SB as

SF = e−
1
2 FmnΓmΓn

. (3.10)

Hence, the Wess-Zumino term for the D9-brane in these variable can be written as follow

SD9
WZ =

∫
d10

ξ Q̄10SF
−1C, (3.11)

where the charge spinor Q̄10 is defined as

Q̄10 =
q

210 〈0|Γ0 . . .Γ9. (3.12)

The expression (3.11) precisely reproduces (2.15) for p = 9.
Wess-Zumino term (3.11) is written in DFT covariant terms and hence is expected to provide

Wess-Zumino terms for all other Dp-branes upon T-duality rotations. The only issue here would
be the gauge fixing condition that relates worldvolume and space-time coordinates.

momentum xm winding x̃mDoubled space-time

D9

D8
T-duality

Figure 1: D-branes in doubled space. All branes have a ten-dimensional worldvolume and the intersection
of this with the ten physical momentum dimensions gives the apparent dimensionality of the worldvolume. T-
duality along an isometry direction can move part of the ten-dimensional worldvolume between momentum
and winding directions.

Following the ideas expressed in [43, 44] it is convenient to understand any Dp-brane as a D9
brane rotated in the full doubled space as depicted on Fig. 1. Hence, keeping the gauge fixing
condition unchanged, one of the worldvolume coordinates, say ξ 9, will be identified with a dual
coordinate, say x̃9. Since we always assume ∂̃ m = 0, this implies that no fields depend on ξ 9 and
the integral becomes trivial and can be dropped leaving us with one worldvolume integration less.
This can be interpreted as changing the dimensionality of the worldvolume of the rotated D9 brane
in the visible (geometric) space-time, which becomes worldvolume of a D8-brane.

Rotation of the D9 brane in the doubled space can be encoded in action of T-duality transfor-
mation on the charge Q10

Q̄9 = Q̄10Γ
9 =

q
29 〈0|Γ0 . . .Γ8, (3.13)

where we act along x9 for concreteness. It is straightforward to check that such transformed charge
gives the correct Wess-Zumino action for the D8-brane

SD8
WZ =

∫
d10

ξ Q̄9SF
−1C =

∫
d9

ξ

[
eF2C

]
9−form

. (3.14)

9
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Here the integral over ξ 9 is dropped since it is now gauge fixed to be x̃9 and nothing depends on it.
Also we assume proper normalization of the overall expression.

Hence, the final answer for the expression providing Wess-Zumino term for any Dp-brane is

SDp
WZ =

∫
d10

ξ Q̄pSF
−1C. (3.15)

This is T-covariant as is written in DFT notations and hence does not change its form upon T-duality
transformations. To reproduce the Wess-Zumino term for a given Dp-brane one must choose the
charge Qp appropriately. This can be interpreted as choosing a frame in which the D9-brane is
rotated such that to be partially invaded into the doubled space.

Following the same scheme one introduces Wess-Zumino term for Dp-branes of massive Type
IIA theory by a mild deformation of the RR spinor inside DFT

C → C+
m
2

SBx̃1Γ
1|0〉, (3.16)

where x̃1 is a coordinate in the dual space. This is the generalized Scherk-Schwarz mechanism
suggested in [45]. In principle one is allowed to take any dual coordinate instead of x̃1, this will not
change the final result. Expression for the Wess-Zumino term in the massive theory remains in the
same covariant form (3.15) with C replaced according to the Scherk-Schwarz ansatz above.

3.2 NS 5-branes

Gauge potentials interacting with branes of the T-duality orbit of NS5-brane can be encoded
(at the linearized level) in the rank four antisymmetric tensor DMNKL of DFT. In addition to define
dual formulation of Double Field Theory on introduces auxiliary potentials DMN and D, whose
field strengths are written as [46]

H(0)
MNP = ∂

QDQMNP +3∂[MDNP],

H(0)
M = ∂

NDMN +∂MD.
(3.17)

The first line encodes the 3-form field strength Hmnp, geometric flux fmn
k as well as the exotic

fluxes Qm
kl and Rmnk.

These field strengths are invariant under gauge transformations

δDMNPQ = ∂RΞ
RMNPQ +4∂

[M
Ξ

NPQ] ,

δDMN = ∂PΞ
PMN +2∂

[M
Ξ

N] ,

δD = ∂MΞ
M .

(3.18)

The important check of whether the gauge invariant Wess-Zumino term for NS5-brane (2.22) can
be generalized to other branes of the orbit at the full non-linear level, is the possibility of adding
expressions non-linear in the RR fields to the covariant field strengths HMNP and HM. Straight-
forward calculation shows that because of the section constraint of DFT this is impossible for any
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component except Hmnp. This is consistent with the fact that the dualization procedure works only
at the linear level.

To reproduce the gauge invariant field strength (2.17) one considers the following DFT covari-
ant expression

HMNP = ∂
QDQMNP + ḠΓMNPC (3.19)

with gauge transformation of the potential DMNKL defined as

δDMNPQ = ∂
R
ΞRMNPQ + ḠΓMNPQλ . (3.20)

Using the Bianchi identity ∂/G = −SB∂/SB
−1G one shows that such defined field strength HMNP is

invariant under gauge transformations of the field DMNKL up to terms where derivative has free
index

δHMNP ∝ ∂[M(ḠΓNP]λ ). (3.21)

Clearly, for the field strength Hmnp of the NS5-brane gauge potential B6 these terms vanish upon the
solution ∂̃ m = 0 of the section constraint. While the other components remain not gauge invariant.

As it is explicitly checked in [37] gauge transformation (3.20) correctly reproduce those of the
6-form potential interacting with the NS5-brane and the (7,1) mixed symmetry potential interacting
with the KK5-monopole. The same is true for the remaining mixed symmetry potentials of the
orbit. These results allow to compose a Wess-Zumino term for the NS 5-branes which reproduces
the correct form (2.22) for the case of the NS5-brane and gives expected results at the linearized
level for other branes of the orbit. Hence, we write

Sα=2
WZ =

∫
d6

ξ QMNPQ

(
DMNPQ + Ḡ Γ

MNPQC
)
, (3.22)

where the capital indices transform in the vector representation of O(4,4). This corresponds to
the split O(10,10)←↩ O(4,4)×O(6,6) induces by the chosen embedding of the worldvolume of the
brane. Gamma matrices are decomposed accordingly

ΓM̂ = (ΓA,ΓMΓ
∗), (3.23)

where ΓA are the O(6,6) gamma matrices and Γ∗ is the O(6,6) chirality matrix. Here hatted indices
label the full 10+10-dimensional doubled space.

The charge QMNPQ must be chosen manually to reproduce expression for the Wess-Zumino
term of a given brane. One associates the components Qmnpq with the NS5-brane, Qmnp

q with the
KK5-monopole and so on.

The worldvolume field strength G is defined as

G = ∂/c+C+SB∂/SB
−1c. (3.24)

Important obstruction to claim that (3.22) provides full Wess-Zumino term for α = 2 branes is that
the expression in parentheses is not gauge invariant. Indeed, one shows that the transformation

δ

(
DMNPQ + Ḡ Γ

MNPQC
)

(3.25)
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vanishes only if all indices are up and if all down indices correspond to isometric directions. The
interpretation is that the expression (3.22) can be understood as a proper Wess-Zumino term for the
T-duality orbit starting with the NS5-brane only if the background of the 5r

2-brane has r isometric
directions. This is in consistency with the common results in the literature [41].

It is straightforward to write Wess-Zumino term for the NS 5-branes in the massive Type IIA
theory following Scherk-Shwarz ansatz similar to (3.16), which for the NS-NS magnetic gauge
fields becomes

D̂MNPQ(x, x̃) = DMNPQ(x)+
m
2

x̃1〈0|A Γ
1
Γ

MNPQC ,

D̂MN(x, x̃) =
m
2

x̃1〈0|A Γ
1
Γ

MNC .
(3.26)

Expression for the field strength HMNP remains the same in terms if these new fields D̂MNPQ and
D̂MN , and in terms of the undeformed fields it becomes

HMNP = ∂QDQMNP +CΓ
MNP

∂/C+2mCΓ
MNP|0〉 . (3.27)

As before the procedure does not spoil the components Hmnp, and these do not gain dependence
on the dual coordinate x̃1. To keep this dependence out of the remaining coordinates as well, one
should always assume existence of r isometries for component with r lower indices.

The Scherk-Schwarz ansatz extended to the worldvolume field strength G becomes

G = ∂/c+C+SB∂/S−1
B c

+mbAΓ
A

3

∑
N=0

1
N +1

(
S(N)

B +
1
N

N−1

∑
n=1

S(N−n)
B S(n)F +S(N)

F

)
|0〉,

(3.28)

where S(N)
B denotes rank N form in expansion of the exponent.

Collecting these results one finds the following expression for the Wess-Zumino term

SNS5m
WZ =

∫
d6

ξ QMNPQ

[
DMNPQ +G Γ

MNPQC−mcΓ
MNPQ(SB +SF )|0〉

]
. (3.29)

4. Conclusions

In this contribution the results of the work [37] are briefly reviewed. We describe DFT covari-
ant constructions for Wess-Zumino actions for branes with tension scaling as g−α

s with α = 1,2.
These correspond to D-branes and to NS 5-branes. We describe the constructions for the massless
theory in (3.15) and (3.22), and for the massive Type IIA theory in (3.16) and (3.29).

The obtained expression for the Wess-Zumino term for the NS 5-branes suggests interpretation
of a given 5r

2-brane as a rotation of the (smeared) NS5-brane in the full doubled space. The pre-
sented procedure requires smearing when moving along the T-duality orbit since expressions for the
field strengths entering the Wess-Zumino term are gauge invariant only if the 5r

2-brane background
has r isometries. The same condition prevents from constructing a full non-linear gauge invariant

12
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field strength Hmn
p for the KK5-monopole, which is in agreement with the common understanding

of the dual graviton problem3.
On the other hand the works [18, 19, 20, 22, 36, 48] for the branes of string theory and [32,

33, 34] for M-theory suggest that one could interpret the instanton-corrected background of say
the KK5-monopole as the full NS5-brane background rotated in the doubled space without any
isometries assumed. It is an open question how one lifts this low energy picture to the full brane
worldvolume actions keeping gauge invariance and not interfering with the dual graviton problem.

The picture becomes even more intriguing when one turns to the case of Dp-branes. In the
construction above one starts with the Wess-Zumino term for the D9-brane and then rotates it in
the full doubled space introducing isometries at each step. However, in analogy with the localized
NS 5-brane solutions one may consider localized Dp-brane solutions, with bulk fields depending
on the 9− p transverse geometric coordinates and p dual coordinates (we do not count x̃0 to avoid
issues with timelike T-duality). Although the corresponding Wess-Zumino term straightforwardly
follows from the expression (3.15), it is not completely clear how to write the DBI action. The
situation here is the opposite of that of the NS 5-branes, where the invariant DBI action producing
localized backgrounds has been presented in [36], while to write gauge invariant Wess-Zumino
term one needs isometries. More involved discussion of these issues is reserved for future work.
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