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1. Introduction

In this proceeding we will consider two particular realizations of defect conformal field theo-
ries realized in massive IIA string theory [1–3].

A defect CFT is defined by degrees of freedom localized on a boundary embedded in the
background of a higher-dimensional CFT [4]. From the point of view of this higher-dimensional
theory, the defect is described by a deformation related to a position-dependent coupling. This
deformation breaks partially the conformal isometries in the bulk and, as a consequence, the 1-
point functions are no longer vanishing. Moreover a non-trivial displacement operator appears and
this is due to the fact of that the energy-momentum tensor is not conserved anymore.

The first examples1 of defect in string theory were given in [25]. The idea is to look at the
emerging of defect CFTs as the result of the interesection of some “defect branes” ending on
a given brane system, with an AdS vacuum at the near-horizon. The defect branes break par-
tially the isometries of the AdS vacuum of the original brane setup producing a lower-dimensional
warped AdS background. The degrees of freedom of the defect CFT are related to the boundary
conditions of the intersection and the warping of the corresponding supergravity background is
associated to the backreaction of the defect branes onto the bulk. This is the supergravity inter-
pretation of the position-dependent deformation of the SCFT, holographically dual to the original
higher-dimensional AdS near-horizon.

More explicitly, let’s consider a supersymmetric AdSd vacuum associated to the near-horizon
of a brane system and let’s assume the existence of a compactification linking the 10d (or 11d)
physics to a solution in a d-dimensional gauged supergravity. The interesection with defect branes
ending on the system will be given by a bound state with a (p + 1)-dimensional worldvolume
described by a d-dimensional spacetime background of the type

ds2
d = e2U(r) ds2

AdSp+2
+ e2V (r) dr2 + e2W (r) ds2

d−p−3 . (1.1)

This background is characterized by a AdSp+2 foliation and an asymptotic behavior locally given
by the AdSd vacuum of the theory. Moreover (1.1) can be uplifted and it reproduces a warped
geometry of the type AdSp+2×M d−p−2×ΣD−d , where M d−p−2 is given by a fibration of the
(d− p− 3)-dimensional internal manifold over the interval Ir and ΣD−d is the internal manifold
characterizing the particular truncation. The holographic picture of this supergravity configuration
is that of a defect SCFTp+1 within the SCFTd−1 dual to AdSd vacuum.

In this proceeding we summarize the ideas and the main results of [1–3] where new warped
AdS3 backgrounds are constructed explicitly from N = 1, 7d and N = (1,1), 6d gauged super-
gravities. These backgrounds are interpreted in massive IIA string theory as 2d defect supercon-
formal field theories within the N = (1,0) SCFT6 and the N = 2 SCFT5 respectively dual to the
AdS7 and AdS6 vacua describing the asymptotics of our solutions. In order to construct the holo-
graphic interpretation in terms of conformal defects, we will consider two particular brane systems
in massive IIA string theory, namely the NS5-D6-D8 interesection [26] and the D4-D8 system [27].
The supergravity solutions describing these intersections are described at the horizon respectively
by AdS7× S3 and AdS6× S4 warped gemoetries. We will present a general 10d background re-
producing the interesection of these two bound states with some new defect branes, respectively

1For a non-exhaustive list of references on conformal defects in string theory and holography see [5–24].
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D2-D4 and D2-NS5-D6. The effect of these new branes will be that of break some of the isometries
of the AdS7 and AdS6 vacua in a way that the near-horizon will be now given by a background of
the type AdS3×S3×S2× I2. Up to a change of coordinate, this near-horizon geometry reproduces
the uplifts of the 6d and 7d solutions with whom we started our analysis. Starting from this we
will give the holographic interpretation of these AdS3 slicings found in 6d and 7d supergravities in
terms of a defect N = (0,4) SCFT2 within N = (1,0) SCFT6 and N = 2 SCFT5. Then we will
conclude by discussing the derivation of the 1-point functions of these defects by using holographic
methods and conformal perturbation expansion.

2. The Setup

In this section we review the main properties of the NS5-D6-D8 and D4-D8 brane setups
in massive IIA string theory. These brane setups give rise to the warped vacua AdS7× S3 and
AdS6× S4, and to their dual2 descriptions respectively given in terms of N = (1,0) SCFT6 and
N = 2 SCFT5. Moreover massive IIA admits two consistent truncations around the abova vacua
reproducing respectively d = 7, N = 1 and d = 6, N = (1,1) gauged supergravities. These two
supergravities will constitute the playground used to generate warped AdS3 solutions describing
conformal surface defects in the brane setups considered.

Let’s firstly consider the construction originally proposed in [26]. This brane system involves
D6 branes stretched along D8 branes with NS5 branes completely inside the D6s. The NS5 describe
the interface between the D6 and the D8 and their mutual distance defines the gauge coupling of
the 6d worlvolume theory of the brane intersection. This brane setup is described, in the low-

branes t y1 y2 y3 y4 y5 z r θ 1 θ 2

NS5 × × × × × × − − − −
D6 × × × × × × × − − −
D8 × × × × × × − × × ×

Table 1: The brane picture of the N = (1,0) SCFT6 described by a NS5-D6-D8 system. This system is
BPS/4. Note that the radial coordinate realizing to the AdS7 geometry is given by a combination of z and r.

energy regime, by an infinite class of warped AdS7× S3 vacua at the horizon preserving 16 real
supercharges and a SO(3) symmetry (as hinted in [31] and clarified in [45]). These string vacua
were originally found in [30] as BPS solutions of massive type IIA supergravity by using the pure
spinor formalism (see also [32, 33, 46] for further details). The internal 3-sphere is squashed and it
is described locally as a S2-fibration over a segment. From the point of view of the brane picture the
D6-branes fill AdS7 and are completely localized at the poles of the 3-sphere. Finally the D8-branes
wrap the S2. In [31] the dual interpretation of the AdS7 vacua in massiva IIA is formulated in terms
of linear quivers realizing a N = (1,0) SCFT6 emerging as a fixed point of the 6d Yang-Mills
worldvolume theory.

These AdS7 solutions define a warped compactification on the squashed S3 [46]. This dimen-
sional reduction implies that the physics of massive IIA string theory around the AdS7×S3 vacua is

2For a non-exhaustive list on AdS7/CFT6 and AdS6/CFT5 correspondences see [26, 28–32, 32–44].
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captured by the minimal3 realization of N = 1, 7d gauged supergravity. In particular the bosonic
fields involved into the 7d supergravity multiplet are

gµν , X , B(3)µνρ , Ai
µ , (2.1)

where X is a real scalar, B(3) is a 3-form gauge potential and Ai
µ an SU(2)-triplet of gauge vectors.

The theory is driven by a scalar potential for X depending on the coupling g associated to the
gauging of the R-symmetry group SU(2)R and on a topological mass h for the 3-form. This 7d
supergravity realization will constitute the main setup used to find massive IIA solutions describing
conformal defects within the N = (1,0) SCFT6.

The other brane setup that we consider is the well-known D4-D8 system where N D4 branes
are completely localized on D8 branes with O8 planes on top [27, 47]. The supergravity solution
describing the low-energy regime of this system is related to an AdS6×S4 geometry at the horizon
[27, 48, 49]. The holographic interpretation of this vacuum was constructed in [27, 47, 50] in terms

branes t y1 y2 y3 y4 z ρ θ 1 θ 2 θ 3

D8 × × × × × − × × × ×
D4 × × × × × − − − − −

Table 2: The brane picture underlying the 5d N = 2 SCFT defined by the D4-D8 system. The system is
BPS/4 and the AdS6×S4 vacuum is realized by a combination of ρ and z.

of a N = 2 SCFT5 with a Usp(N) gauge group and couplings to fundamental and antysimmetric
hypermultiplets.

This vacuum preserves 16 supercharges and SO(4) symmetry. It induces a warped compacti-
fication [51] of massive IIA on the 4-sphere to the so-called Romans supergravity [52], namely the
minimal realization of N =(1,1), 6d gauged supergravity. The bosonic content of the supergravity
multiplet of this theory is given by

gµν , X , B(2)µν , A0
µ , Ai

µ , (2.2)

where X is a real scalar, B(2) is a 2-form gauge potential, A0
µ is an abelian vector and Ai

µ an SU(2)-
triplet of gauge vectors. The gauging of the theory is very similar to the above 7d case. The theory
is driven by a scalar potential for X depending on a coupling g associated to the gauging of the
R-symmetry group SU(2)R and on a topological mass m for the 2-form. This 6d supergravity will
constitute the main setup used to find solutions associated to conformal defects within the N = 2
SCFT5.

3. Warped AdS3×S3×S2× I2 Backgrounds

Let’s consider now the two lower-dimensional supergravities introduced in the previous sec-
tion, namely N = 1, 7d and N = (1,1), 6d gauged supergravities in their minimal realization.

3Only the supergravity multiplet is retained in the compactification.
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For the bosonic field content given respectively in (2.2) and (2.1), we will consider the following
backgrounds [1, 3],

ds2
6,7 = e2U(r) ds2

AdS3
+ e2V (r) dr2 + e2W (r) ds2

Σ2,3
, (3.1)

with Σ2,3 = {S2,S3} respectively for the 6d and 7d cases. As far it regards the scalar we will
suppose in both cases that X = X(r). Furthermore for simplicity we will consider all the vectors
vanishing, while for the p-form gauge potential we will require that

7d : B(3) = k(r)volAdS3 + l(r)volS3 ,

6d : B(2) = b(r)volS2 .
(3.2)

In [1, 3], the BPS equations for (3.1) are derived and solved for the cases of two independent warp
factors U and W , and for the case of one single warp factor U =W .

Let consider the second case. The assumption U = W implies that k = l for the 7d 3-form
(3.2). The BPS equations become in this case very simple and their solution in the 7d case is given
by

e2U =
2−1/4

g1/2

(
r

1 − r5

)1/2

, e2V =
25

2g2
r6

(1 − r5)
2 ,

k = −21/4 L
g3/2

(
r5

1 − r5

)1/2

, X = r , ,

(3.3)

where r ranges from 0 to 1 and the two gauge coupling g and h satisfy the relation h = g
2
√

2
. In the

6d case the solution of the BPS equation takes the following form

e2U =
2−1/3

g2/3

(
r′

1− r′5

)2/3

, e2V =
8
g2

r′4

(1− r′4)2 ,

b = − 21/3 3L
g4/3

(
r′4

1− r′4

)1/3

, X = r′ ,

(3.4)

where also in this case r′ ranges from 0 to 1 and the gauge coupling g and m satisfy the relation
m =

√
2g
3 . For r &r′ → 1, these solutions are locally described by AdS7 and AdS6 geometries,

while, for r &r′ → 0, they manifest singular behaviors.
The goal is to interpret the singularities appearing in the r→ 0 and r′→ 0 limits in terms of

some brane sources. If one consider the uplifts of the asymptotic regime of the solutions (3.3) and
(3.4), one obtains the AdS7×S3 and AdS6×S4 vacua, while for other value of r and r′ one obtains
two AdS3×S3×S2× I2 warped background that are very similar for their geometric properties. In
particular

7d : AdS3×S3× Ir −→ 10d : AdS3×S3× Ir×S2× Iξ

6d : AdS3×S2× Ir′ −→ 10d : AdS3×S2× Ir′×S3× Iξ ′ , (3.5)

where the coordinates ξ and ξ ′ respectively describes the fibrations coordinates of the warped com-
pactifications of massive IIA on the squashed 3-sphere and 4-sphere. The structure of the fluxes
and the same number of supersymmetries preserved hints that the 10d backgrounds obtained by

4
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uplifting from 6d and 7d could be the same background up to a change of coordinates, namely
(r, ξ )→ (r′ ,ξ ′). Unfortunately it is very complicated to derive the explicit form of this change of
coordinate because of the highly non-linear dependence of the warp factors in the uplift expres-
sions.

4. The D2-D4-NS5-D6-D8 System and Conformal Defects

The two solutions in 6d and 7d written in (3.3) and (3.4) are asymptotically locally AdS7 and
AdS6. As we said in the previous section, from the 10d point of view these are the two warped
vacua AdS7×S3 and AdS6×S4. This means that, if we want to search for a brane setup described
by a AdS3 near-horizon of the type of (3.5), we have to consider supergravity solutions including
as particular limits the solutions of the bound states NS5-D6-D8 and D4-D8 with some new defect
branes breaking the isometries of the above vacua.

For the 7d case this solution can be derived exactly and it describes the intersection of a D2-D4
bound state with the NS5-D6-D8 one. The brane solution of the general intersection is given by [2]

branes t y ρ ϕ1 ϕ2 ϕ3 z r θ 1 θ 2

NS5 × × × × × × − − − −
D6 × × × × × × × − − −
D8 × × × × × × − × × ×
D2 × × − − − − × − − −
D4 × × − − − − − × × ×

Table 3: The brane picture of the N = (0,4) defect SCFT2 associated to D2- and D4-branes ending on an
NS5-D6-D8 intersection. The above system is BPS/8.

ds2
10 = S−1/2H−1/2

D2 H−1/2
D4 ds2

Mkw2
+ S−1/2H1/2

D2 H1/2
D4

(
dρ2 +ρ2 dΩ2

(3)

)
+

+ K S−1/2H−1/2
D2 H1/2

D4 dz2 + K S1/2H1/2
D2 H−1/2

D4

(
dr2 + r2 dΩ2

(2)

)
,

eΦ = gs K1/2 S−3/4H1/4
D2 H−1/4

D4 ,

H(3) = ∂

∂ z (KS)vol(3) − dz ∧ ∗(3) (dK) ,

F(0) = m ,

F(2) = −g−1
s ∗(3) (dS) ,

F(4) = g−1
s vol(1,1) ∧ dz ∧ dH−1

D2 + ∗(10)
(
vol(1,1) ∧ vol(3) ∧ dH−1

D4

)
,

(4.1)

where the functions K(z,r) and S(z,r) satsify [49] mgs K − ∂S
∂ z = 0 ,

∆(3)S + 1
2

∂ 2

∂ z2 S2 = 0 ,
(4.2)

5
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while

HD2(ρ,r) =
(

1+ qD4
ρ2

)(
1+ qD6

r

)
, HD4(ρ) =

(
1+ qD4

ρ2

)
. (4.3)

As it has been showed in [2], the solution (4.1) reproduces the near-horizon geometry AdS3×S3×
S2× I2. Moreover by comparing the fluxes and the supersymmetries preserved the conclusion is
that, up to a change of the fibration-coordinates, this near-horizon reproduces the uplift of the 7d
solution (3.3).

The 6d case is analogous, but now the isometries of the AdS6 vacuum are broken by the
intersections of the defect branes D2-NS5-D6 [3]. The general form of the 10d solution is the

branes t y ρ ϕ1 ϕ2 ϕ3 z r θ 1 θ 2

D8 × × × × × × − × × ×
D4 × × − − − − − × × ×
D2 × × − − − − × − − −

NS5 × × × × × × − − − −
D6 × × × × × × × − − −

Table 4: The brane picture of the N = (0,4) defect SCFT2 produced by D2-NS5-D6 branes ending on an
D4-D8 bound state. The system is BPS/8.

same of (4.1), but clearly now the explicit form of the warp factors appearing in (4.1) is different,
i.e. the parametrization of the AdS3 near-horizon is different respect to that one obtained from the
solution (4.3). Unfortunately we don’t have an explicit form of the warp factors in this case, but the
structure of fluxes and the supersymmetry preserved by the uplift of the 6d AdS3 solution in (3.5)
are the same of the near-horizon obtained from (4.3).

The holographic interpretation of these AdS3 solution is given in terms of a N = (0,4) SCFT2

realizing a surface defect respectively within the N = (1,0) SCFT6 and N = 2 SCFT5. In order
to show that the 2d defect SCFTs corresponding to the 6d and 7d cases are actually the same,
one should provide an explicit change of coordinates within the two uplifts (3.5), but the above
arguments there is a quite strong evidence on their equivalence.

Finally we checked this holographic interpretation by sketching the calculation of the 1-point
functions. The presence of the defect breaks some of the conformal isometries so as a first check
it is interesting to see if the position-dependence of the coupling of the deformation describing
the defect is the same when it is calculated using the standard holographic dictionary on one side
(extracting the 1-point functions from the asymptotic expansion of the supergravity background)
and on the other side by considering a conformal perturbation expansion of the correlation functions
[8]. Supposing that the deformation is driven in both cases by the scalar X , we obtain the same
behaviors in both case 6d and 5d cases, namely [2, 3]

〈OX〉6d ∼ x−4 ,

〈OX〉5d ∼ x−3 ,
(4.4)

where x is the radial coordinate of the AdS3 slicings of (3.3) and (3.4).
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