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1. Motivation and introduction

Double field theory (DFT) [1, 2, 3, 4], seen as an attempt to realize the T-duality of closed
string theory at the level of low-energy supergravity, is based on a generalized geometry of a tan-
gent bundle extended by 1-forms [5, 6]. This generalized tangent bundle is then equipped with a
bracket, a symmetric bilinear form and a map to a tangent bundle defining the structure of Courant
algebroid [7, 8, 9]. The symmetric bilinear form defines an O(d,d) structure relevant for T-duality
on a d-dimensional target space, while the symmetries of the generalized tangent bundle unify dif-
feomorphisms and 2-form gauge transformations of the Kalb-Ramond field. Moreover, the proper-
ties of the Courant bracket are used to systematically determine background fluxes of string theory
and their Bianchi identities [10, 11].

Furthermore, in Ref. [12] Roytenberg used graded geometry to show that given the data of
a Courant algebroid one can uniquely construct the Batalin-Vilkovisky (BV) master action for a
membrane sigma-model which is a first-order functional for generalized Wess-Zumino terms in
three dimensions. (See also Refs. [13, 14, 15] for earlier work in the same direction.) This Courant
sigma-model belongs to a general class of topological sigma-models of AKSZ type [16] satisfying
the classical master equation. In this particular case one can show that the conditions for gauge
(or more generally BRST) invariance of the Courant sigma-model and the on-shell closure of the
algebra of gauge transformations follow from the classical master equation and correspond to the
defining axioms of a Courant algebroid. The membrane sigma-models were subsequently used for
a systematic description of closed strings in non-geometric flux backgrounds [10, 17, 18, 19, 20].

In Ref. [20], where this contribution is mainly based, we proposed a DFT membrane sigma-
model starting from a Courant sigma-model defined over a doubled target spacetime and adopting
a suitable projection. Recall that in Courant algebroids the bundle over a base manifold is extended
(“doubled”), while in DFT one doubles the coordinates, i.e. the base space. In order to relate
the two approaches, we started from a large Courant algebroid defined over a manifold spanned
locally by the set of doubled coordinates {X i, X̃i}. This naturally introduces an O(2d,2d) structure
indicating that a suitable projection to a subbundle with O(d,d) structure is due. This projection
was identified and all Courant algebroid structures were projected accordingly to DFT structures;
for instance, the characteristic C-bracket of DFT is obtained in this way from the Courant bracket
of the large Courant algebroid. The properties of this bracket were analyzed and used to define a
DFT algebroid1. Moreover, the flux formulation of DFT was used to identify the components of
the anchor map and with these data we defined a DFT membrane sigma-model. Finally, we showed
that this worldvolume theory is gauge invariant only under a certain condition which corresponds
to the strong constraint of the target space DFT.

The gauge transformations of the DFT membrane sigma-model were obtained in [20] by pro-
jecting the standard gauge transformations of the large Courant sigma-model. However, the latter
is the bosonic sector of the classical BV action defined using the BV-BRST formalism after all
antifields are set to zero. The master action is defined over a graded manifold in terms of su-
perfields whose components include the classical fields, ghosts, ghosts for ghosts and antifields.
The classical gauge transformations lift to the BRST transformations of the superfields, and the

1For more details, see the contribution [21] to this volume focusing on the algebroid structure of DFT.
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BRST invariance of the master action is there by construction—the classical BV action satisfies the
classical master equation.

In Ref. [22], the classical master action of the large Courant sigma-model was projected to
the corresponding DFT action for projected superfields. This action does not satisfy the BV master
equation and cannot be constructed using AKSZ theory. This is an expected result, since already at
the bosonic level the DFT membrane sigma-model is gauge invariant only up to the worldvolume
analogue of the strong constraint, and therefore one cannot expect BRST invariance of the full
action. Here we complete this analysis by explicitly constructing the BRST transformations for all
projected superfield components of the full DFT membrane sigma-model.

In Section 2 we review the gauge symmetries of the Courant sigma-model, both in BV-BRST
formalism and at the bosonic level. Then, in section 3 we analyze in detail the gauge symmetries
of the membrane sigma-model for DFT obtained by projecting the BRST symmetry of the large
Courant sigma-model. We show explicitly how the analogue of the strong constraint appears from
the gauge invariance of the equations of motion. In Section 4 we briefly present our conclusions
and outlook.

2. Gauge and BRST symmetries of the Courant sigma-model

2.1 Courant sigma-model as a reducible gauge theory with an open gauge algebra

First we discuss the gauge symmetries of the Courant sigma-model for a membrane world-
volume Σ3, defined over a doubled target space M . The action functional for the bosonic model
is

SC[X,A,F ] =
∫

Σ3

(
FI ∧dXI + 1

2 η̂ÎĴ A
Î ∧dAĴ−ρ

I
Ĵ(X)A

Ĵ ∧FI +
1
6 TÎĴK̂(X)A

Î ∧AĴ ∧AK̂
)
, (2.1)

where I = 1, . . . ,2d is a target space index, Î = 1, . . . ,4d is the bundle index and we have con-
sidered scalar fields as components of maps X = (XI) : Σ3→M , 1-forms A ∈ Ω1(Σ3,X∗E), and
an auxiliary 2-form F ∈ Ω2(Σ3,X∗T ∗M ), and locally we consider the generalized tangent bundle
E = TM ⊕T∗M . The fields (XI) = (X i, X̃i) are identified with the pullbacks of the coordinate
functions, X i = X∗(xi) and X̃i = X∗(x̃i). The symmetric bilinear form of the Courant algebroid
over E corresponds to the O(2d,2d)-invariant metric

η̂ = (η̂ÎĴ) =

(
0 12d

12d 0

)
, (2.2)

not to be confused with the O(d,d) metric η that will appear later. ρ I
Ĵ are the components of

the anchor map ρ : E→ TM and TÎĴK̂ are related to a general twist of the Courant algebroid,
generating a generalized Wess-Zumino term. For a local basis (eÎ) of E, they are identified with
X∗ (〈eÎ, [eĴ,eK̂ ]〉), where 〈·, ·〉 and [·, ·] are the non-degenerate symmetric bilinear form and the
bracket of the Courant algebroid over E respectively.
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The action (2.1) is invariant under the following infinitesimal gauge transformations [14]

δ(ε, t)XI = ρ
I
Ĵ ε

Ĵ , (2.3)

δ(ε, t)AÎ = dε
Î + η̂

ÎN̂TN̂ĴK̂A
Ĵ
ε

K̂− η̂
ÎĴ

ρ
I
Ĵ tI , (2.4)

δ(ε, t)FI =−dtI−∂Iρ
J

Ĵ A
Ĵ ∧ tJ− ε

Ĵ
∂Iρ

J
Ĵ FJ +

1
2 ε

Ĵ
∂ITÎL̂Ĵ A

Î ∧AL̂ , (2.5)

where ε Î is a scalar gauge parameter, dependent on the worldvolume coordinates, and tI is an
additional one-form gauge parameter.2 These transformations define a first-stage reducible gauge
symmetry, typical for gauge theories that include differential forms with degree larger than one
[23, 24]. For completeness, and although this is simpler to do directly in the BV formalism, it is
instructive to check the gauge invariance of the field equations of the model and the closure of the
algebra of gauge transformations. Varying (2.1) with respect to FI,AÎ and XI respectively, we find
the field equations

DXI := dXI−ρ
I
Ĵ A

Ĵ = 0 , (2.6)

DAÎ := dAÎ− η̂
ÎK̂

ρ
I
K̂FI +

1
2 η̂

ÎK̂TK̂ĴL̂A
Ĵ ∧AL̂ = 0 , (2.7)

DFI := dFI +∂Iρ
J

K̂ AK̂ ∧FJ− 1
6 ∂ITĴK̂L̂A

Ĵ ∧AK̂ ∧AL̂ = 0 . (2.8)

Let us now examine how the field equation (2.6) transforms. We find

δ(ε, t)DXI = ε
Ĵ
∂Mρ

I
Ĵ DXM− η̂

ĴK̂
ρ

I
Ĵρ

L
K̂ tL + ε

ĴAK̂(2ρ
M
[K̂∂Mρ

I
Ĵ]−ρ

I
N̂η̂

N̂M̂TM̂K̂Ĵ) , (2.9)

where underlined indices are not antisymmetrized. This directly implies that

η̂
ĴK̂

ρ
I
Ĵρ

L
K̂ = 0 , (2.10)

2ρ
M
[K̂∂Mρ

I
Ĵ]−ρ

I
N̂η̂

N̂M̂TM̂K̂Ĵ = 0 , (2.11)

whereupon the field equation transforms covariantly. Next we examine the transformation of the
equation (2.7) and obtain

δ(ε, t)DAÎ = −η̂
ÎN̂(∂MTN̂ĴK̂ε

K̂AĴ−∂Mρ
I
N̂ tI)∧DXM + η̂

ÎN̂TN̂ĴK̂ε
K̂DAĴ +

+ 1
2 η̂

ÎK̂(3ρ
I
[N̂∂ITĴL̂]K̂−ρ

I
K̂∂ITN̂ĴL̂−3TK̂R̂[N̂η̂

R̂P̂TĴL̂]P̂

)
ε

N̂AĴ ∧AL̂ , (2.12)

where we used the condition in (2.11). We observe that the field equation transforms covariantly
provided one more condition holds, namely

3ρ
I
[N̂∂ITĴL̂]K̂−ρ

I
K̂∂ITN̂ĴL̂−3TK̂R̂[N̂η̂

R̂P̂TĴL̂]P̂ = 0 . (2.13)

It is then easily confirmed that transforming the field equation (2.8) does not produce any further
conditions. Moreover, the three conditions (2.10), (2.11) and (2.13) are precisely the local coordi-
nate expressions for the three independent axioms of a Courant algebroid.

2Note that these additional gauge invariances were not discussed in Ref. [20].
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Closure of the algebra of gauge transformations gives

[δ(ε1, t1),δ(ε2, t2)]X
I = ρ

I
Ĵ ε

Ĵ
12 , (2.14)

ε
Î
12 := η̂

ÎĴTĴK̂L̂ε
K̂
1 ε

L̂
2 , (2.15)

where we used the condition in (2.11) to define ε12. Furthermore we have

[δ(ε1, t1),δ(ε2, t2)]A
Î = δ(ε12, t12)A

Î− η̂
ÎĴ

∂MTĴK̂L̂ε
K̂
1 ε

L̂
2 DXM , (2.16)

t12I := ∂ITK̂L̂Ĵ ε
K̂
1 ε

L̂
2 AĴ +2∂Iρ

J
K̂ ε

K̂
[1 t2]J , (2.17)

where we used the conditions in (2.11) and (2.13). The closure on the field FI does not introduce
any further conditions. Therefore we conclude that the Courant sigma-model is gauge invariant
on-shell, provided that Eqs. (2.10, 2.11, 2.13) hold. (Sometimes this is referred to as a reducible
gauge theory with an open gauge algebra.)

2.2 The BV action and BRST transformations

On-shell closure of the algebra of gauge transformations implies that the natural description
of the gauge symmetries for the Courant sigma-model is the BV-BRST formalism (for physics-
oriented reviews, see [23, 24]). In particular, one can construct the classical master action [12]

SC[X,A,F] =
∫

T [1]Σ3

µ

(
FI dXI + 1

2 η̂ÎĴ AÎ dAĴ−ρ
I
Ĵ(X)AĴ FI +

1
6 TÎĴK̂(X)AÎAĴAK̂

)
, (2.18)

where µ ≡ d3σd3θ is the Berezinian measure on the graded manifold T [1]Σ3 spanned by coordi-
nates (σ µ ,θ µ) of degrees (0,1) respectively, d = θ µ∂µ is the superworldvolume differential and
superfields include the classical fields (X,A,F), ghosts (ε, t,v) of ghost numbers (1,1,2) and anti-
fields:

XI = XI +F†I + t†I + v†I , (2.19)

AÎ = ε
Î +AÎ + η̂

ÎĴA†
Ĵ
+ η̂

ÎĴ
ε

†
Ĵ
, (2.20)

FI = vI + tI +FI +X†
I . (2.21)

Here XI,AÎ,FI are superfields with total degree 0,1,2 respectively, where the total degree of a field
φ is the sum of its ghost number gh(φ ) and its form degree deg(φ ). Antifields are denoted by a
dagger † and we have gh(φ ) + gh(φ †) =−1 and deg(φ ) + deg(φ †) = 3.

The conditions given in Eqs. (2.10), (2.11) and (2.13) are obtained directly from the classical
master equation {SC,SC} = 0, where the (anti)bracket arises from the target manifold symplectic
structure

ω = dXI dFI +
1
2 η̂ÎĴ dAÎdAĴ . (2.22)

Setting all ghosts and antifields to zero in the master action (2.18) reproduces the Courant sigma-
model (2.1), while the BRST transformations of the classical fields give the gauge transformations

5
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as in (2.3)–(2.5). For completeness we present here the BRST transformations of all the fields,

δXI = ρ
I
Î ε

Î , (2.23)

δAÎ = dε
Î− η̂

ÎĴ
ρ

I
ĴtI + η̂

ÎĴTĴK̂L̂A
K̂

ε
L̂− η̂

ÎĴ
∂Jρ

I
ĴF†JvI +

1
2 η̂

ÎĴ
∂JTĴK̂L̂F†J

ε
K̂

ε
L̂ , (2.24)

δFI =−dtI−∂Iρ
J
Î ε

ÎFJ−∂Iρ
J
Î A

ÎtJ + 1
2 ∂ITÎĴK̂ε

ÎAĴAK̂ +

+ 1
2 ∂ITÎĴK̂η̂

K̂L̂
ε

Î
ε

ĴA†
L̂
−∂Iρ

J
Î η̂

ÎĴA†
Ĵ
vJ +

1
2 ∂I∂J∂Kρ

L
Î F†JF†K

ε
ÎvL−∂I∂Jρ

K
Î t†J

ε
ÎvK−

−∂I∂Jρ
K
Î F†J

ε
ÎtK +∂I∂Jρ

K
Î F†JAÎvK− 1

12 ∂I∂J∂KTÎĴK̂F†JF†K
ε

Î
ε

Ĵ
ε

K̂ +

+ 1
6 ∂I∂JTÎĴK̂t†J

ε
Î
ε

Ĵ
ε

K̂− 1
2 ∂I∂JTÎĴK̂F†JAÎ

ε
Ĵ
ε

K̂ , (2.25)

δε
Î = η̂

ÎĴ
ρ

I
Ĵ vI− 1

2 η̂
ÎĴTĴK̂L̂ε

K̂
ε

L̂ , (2.26)

δ tI = dvI−∂Iρ
J

Îε
ÎtJ +∂Iρ

J
Î A

ÎvJ− 1
2 ∂ITÎĴK̂ε

Î
ε

Ĵ AK̂ +∂I∂Jρ
K

Î F†J
ε

ÎvK− 1
6 ∂I∂JTÎĴK̂ F†J

ε
Î
ε

Ĵ
ε

K̂ ,

(2.27)

δvI =−∂Iρ
J

Îε
ÎvJ +

1
6 ∂ITÎĴK̂ε

Î
ε

Ĵ
ε

K̂ . (2.28)

Note that one needs to introduce a ghost for ghost v because we are dealing with a first-stage
reducible gauge theory, or said differently, there are “gauge invariances” for gauge transformations
typical for gauge theories including higher differential forms.

3. Gauge symmetries of the DFT membrane sigma-model

3.1 DFT membrane sigma-model

In Ref. [20] we showed that one can define a DFT algebroid structure and a corresponding
membrane sigma-model starting from a large Courant algebroid over a 2d dimensional space M

with local coordinates {X i, X̃i} and applying a suitable projection. In particular, we considered
sections A of the large Courant algebroid E, decomposed in a suitable basis,

A = AI
+e+I +AI

−e−I , (3.1)

e±I = ∂I±ηIJ dXJ , (3.2)

AI
± = 1

2(A
I±η

IJ ÃJ) , (3.3)

and projected to the subbundle L+ spanned by the local sections (e+I ). Projection of the symmetric
bilinear form of E, leads to the O(d,d) invariant DFT metric:3

〈A,B〉E = 1
2 η̂ÎĴA

ÎBĴ = ηIJ(AI
+BJ

+−AI
−BJ
−) 7→ ηIJAIBJ = 〈A,B〉L+ . (3.4)

This works for general Courant algebroids over M with anchor ρ I
Ĵ = (ρ I

J, ρ̃
IJ), yielding a C-

bracket:
[[A,B]]J = (ρ+)

L
I
(
AI

∂LBJ− 1
2 η

IJAK
∂LBK− (A↔ B)

)
+ T̂IK

JAIBK , (3.5)

in terms of a map ρ+ : L+→ TM with components (ρ±)I
J = ρ I

J±ηJK ρ̃ IK , and T̂ chosen as:

T̂IJK := 1
2 TIJK = 1

2

(
AIJK +3B[IJ

L
ηK]L +3C[I

LM
ηJLηK]M +DLMN

ηI[LηJ[MηK]N
)
, (3.6)

3Denoting A+ = A and B+ = B.
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where A, B, C and D are the components of TÎĴK̂ :4

TÎĴK̂ :=

(
AIJK BIJ

K

CI
JK DIJK

)
. (3.7)

Using these projected data we proposed the following DFT membrane sigma-model:

SDFT[X,A,F ] =
∫

Σ3

(
FI ∧dXI +ηIJAI ∧dAJ− (ρ+)

I
JAJ ∧FI +

1
3 T̂IJKAI ∧AJ ∧AK) . (3.8)

Next, in parallel to the flux formulation of DFT [2, 25, 26, 27, 28, 29] we took a parametrization of
the ρ+ components to be

(ρ+)
I
J =

(
δ i

j β i j

Bi j δi
j +β jkBki

)
. (3.9)

In particular this means that
η

JK(ρ+)
I
J(ρ+)

L
K = η

IL , (3.10)

which is to be compared with the condition in (2.10). Moreover, in Ref. [20] we proposed a set of
infinitesimal gauge transformations

δεXI = ρ
I
Jε

J , (3.11)

δεAI = dε
I +η

IN T̂NJKAJ
ε

K , (3.12)

δεFI =−ε
J
∂Iρ

K
JFK + ε

JAK ∧AL
∂IT̂KLJ , (3.13)

and showed that the action (3.8) is invariant under these transformations provided that

2ρ
K
[L∂Kρ

I
M]−ρK[L∂

I
ρ

K
M] = ρ

I
Jη

JK T̂KLM , (3.14)

3ρ
J
[K∂JT̂MM′]N−ρ

J
N∂JT̂KMM′−3η

PJT̂P[MM′ T̂K]NJ = 0 . (3.15)

However, these conditions are not sufficient; one needs to additionally impose the following con-
straint:

ρKL ∂
I
ρ

K
M ε

M FI = 0 . (3.16)

As argued in Ref. [20] this is the way that the strong constraint of the target space DFT appears in
the worldvolume theory.

3.2 Projecting superfields

The bosonic action (3.8) is lifted to the full action in terms of superfields [22]:5

SDFT[X,A+,F] =
∫

T [1]Σ3

µ
(
FI dXI +ηIJAI

+dAJ
+− (ρ+)

J
I(X)AI

+FJ +
1
3 T̂IJK(X)AI

+AJ
+AK

+

)
,

(3.17)

4These are not precisely identified with the fluxes of DFT, thus we do not use the corresponding notation (H, f ,Q,R).
The flux identification is explained in detail in Ref. [20].

5Writing ± subscripts explicitly again.
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where in comparison with (2.18) we used the structures (ρ+, T̂ ,η) of a DFT algebroid and projected
the superfield A→ A+:

AI
+ = ε

I
++AI

++η
IJA†

+J +η
IJ

ε
†
+J , (3.18)

by setting the A− and ε− to zero, an operation whose consistency will be addressed below. Next,
we project the BRST transformations of the superfields of the large Courant sigma-model (2.18).
By splitting and projecting the BRST transformation of the field AÎ , one obtains:

δAI
+ = dε

I
+− 1

2 η
IJ

ρ
K
+J tK +η

ILT̂LJKAJ
+ε

K
+− 1

2 η
IJ

∂Kρ
L
+JF†KvL +

1
2 η

IJ
∂K T̂JLMF†K

ε
L
+ε

M
+ , (3.19)

δAI
− = 1

2 η
IJ

ρ
K
−J tK + 1

2 η
IL

θJKLAJ
+ε

K
+ + 1

2 η
IJ

∂Kρ
L
−JF†KvL +

1
4 η

IJ
∂KθLMJF†K

ε
L
+ε

M
+ , (3.20)

and for the ghost field ε Î:

δε
I
+ = 1

2 η
IJ

ρ
K
+JvK− 1

2 η
ILT̂LJKε

J
+ε

K
+ , (3.21)

δε
I
− =−1

2 η
IJ

ρ
K
−JvK− 1

4 η
IL

θJKLε
J
+ε

K
+ , (3.22)

up to terms containing A− and ε− on the right-hand sides of the above equations; such terms will
eventually drop out by setting the corresponding fields to zero, but this has to be done in a consistent
way. The quantity θIJK is defined as

θIJK =−AIJK +3ηL[KBIJ]
L−4ηL[IBJ]K

L−3ηL[IηMJCK]
LM−4ηKLηM[ICJ]

ML +ηKLηIMηJNDMNL ,

(3.23)

with A, B, C and D being the components of TÎĴK̂ in (3.7).
The requirement that the projection onto L+ be well-defined with respect to the BRST symme-

try means that the transformations of A− and ε− must vanish. Therefore, setting δA− = δε− = 0
leads to the fixing of the ghost fields tI and vI:

vI =−1
2 ηILη

NM
ρ

L
−MθJKNε

J
+ε

K
+ =: 1

2 ΘIJK(X)εJ
+ε

K
+ , (3.24)

tI = ΘIJK(X)AJ
+ε

K
+ + 1

2 ∂KΘILMF†K
ε

L
+ε

M
+ . (3.25)

We used the fact that ρ I
−J satisfy (3.10), since one can write

0 = η
ÎĴ

ρ
K

Îρ
L

Ĵ =
1
2 η

IJ (
ρ

K
+Jρ

L
+I−ρ

K
−Jρ

L
−I
)
. (3.26)

Fixing of the ghosts t and v is a consequence of choosing the map ρ+ as in (3.9). Recall that the
anchor map of an exact Courant algebroid has a kernel; in the standard case of the projection to
the tangent bundle it is all of the cotangent bundle. However, a DFT algebroid is different and
this can be seen as follows. Choosing the above parametrization for ρ+, this map has no kernel
and therefore we have to fix the symmetry associated to the gauge parameter t that came from the
Courant algebroid where the map had a kernel instead. As we have the fixed ghosts tI and vI , their
BRST transformations must be consistent with those coming from the master action (2.27) and
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(2.28). Applying the BRST operator on (3.25) one obtains:

δ tI = ∂LΘIJKδXLAJ
+ε

K
+ +ΘIJKδAJ

+ε
K
+ +ΘIJKAJ

+δε
K
+ + 1

2 ∂A∂KΘILMδXAF†K
ε

L
+ε

M
+ +

+ 1
2 ∂KΘILMδF†K

ε
L
+ε

M
+ −∂KΘILMF†K

δε
L
+ε

M
+

= ΘIJKdε
J
+ε

K
+ + 1

2 ∂KΘILMDXK
ε

L
+ε

M
+ + 1

4

(
η

JL
ρ

K
+LΘIJD∂AΘKBC +

+∂A
(
2η

JL
ΘIJDT̂LBC−2∂JΘICDρ

J
+B−η

JL
ρ

K
+LΘIJDΘKBC

))
F†A

ε
B
+ε

C
+ε

D
+ +

+
(

∂MΘIJLρ
M
+K− 1

2 ΘIPLη
PR

ρ
N
+RΘNJK +ΘIMLη

MN T̂NJK− 1
2 ΘIMJη

MN T̂NKL +

+ 1
4 ΘIJMη

MN
ρ

P
+NΘPKL

)
AJ
+ε

K
+ε

L
+ , (3.27)

using the BRST transformation for F†I:

δF†I = DXI−∂Jρ
I
+KF†J

ε
K
+ . (3.28)

However, the projection of (2.27) implies the following transformation:

δ tI = dvI− ε
J
+∂Iρ

K
+JtK +AJ

+∂Iρ
K
+JvK−∂IT̂JKLε

J
+ε

K
+AL

+−∂I∂Jρ
K
+Lε

L
+F†JvK−

− 1
3 ∂I∂JT̂KLMF†J

ε
K
+ε

L
+ε

M
+

= 1
2 ∂JΘIKLDXJ

ε
K
+ε

L
++ΘIJKdε

J
+ε

L
++

+
(

1
2 ∂MΘIKLρ

M
+J−∂Iρ

M
+KΘMJL +

1
2 ∂Iρ

M
+JΘMKL−∂IT̂JKL

)
AJ
+ε

K
+ε

L
+ . (3.29)

Eqs. (3.27) and (3.29) should coincide. Therefore, the consistency condition is:

3SIJKLAJ
+ε

K
+ε

L
++∂ASIBCDF†A

ε
B
+ε

C
+ε

D
+− 1

2 RK
IB∂AΘKCDF†A

ε
B
+ε

C
+ε

D
+ = 0 , (3.30)

where,

SIJKL := ∂MΘI[JKρ
M
+L]−ΘIM[Jη

MN T̂NKL]+
1
2 η

MN
ρ

P
+NΘIM[JΘPKL]− 2

3 ∂IT̂JKL +∂Iρ
M
+[JΘMKL] ,

(3.31)

RI
JK := η

AB
ρ

I
+BΘJAK +2∂Jρ

I
+K . (3.32)

The same can be done for ghost vI and we obtain:

SIJKLε
J
+ε

K
+ε

L
+ = 0 . (3.33)

Fixing function ΘIJK(X) by setting:

RI
JK = 0 , (3.34)

in (3.32) can be shown to imply SIJKL = 0 meaning conditions (3.30) and (3.33) are automatically
satisfied.
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3.3 Projected gauge transformations

Once we consistently projected all components of the superfields we obtain the following set
of gauge transformations:6

δεXI = ρ
I
Jε

J , (3.35)

δεAI = dε
I +Φ

I
JKAJ

ε
K , (3.36)

δεFI =−d(ΘIJKAJ
ε

K)− ε
J
∂Iρ

K
JFK + ε

JAK ∧AL(∂IT̂KLJ−∂Iρ
N

KΘNLJ) , (3.37)

where we defined
Φ

I
JK := η

IN(T̂NJK− 1
2 ρ

M
NΘMJK) . (3.38)

Note that the gauge variation of FI now includes trivial gauge transformations proportional to the
equations of motion.

As we did for the Courant sigma-model case, we examine the transformation of the field
equations obtained by varying the action (3.8) with respect to FI,AI and XI respectively

DXI := dXI−ρ
I
J AJ = 0 , (3.39)

DAI := dAI− 1
2 η

IK
ρ

J
KFJ +

1
2 η

IK T̂KJLAJ ∧AL = 0 , (3.40)

DFI := dFI +∂Iρ
J

K AK ∧FJ− 1
3 ∂IT̂JKL AJ ∧AK ∧AL = 0 . (3.41)

The gauge transformation of the first field equation gives:

δεDXI = ε
J
∂Mρ

I
JDXM + ε

JAK(2ρ
M
[K∂Mρ

I
J]−ρ

I
NΦ

N
KJ) . (3.42)

Therefore, the first condition from the covariance of the field equation is

2ρ
M
[K∂Mρ

I
J]−ρ

I
NΦ

N
KJ = 0 . (3.43)

If we compare this expression with the DFT fluxes obtained by twisting the C-bracket (3.14), we
obtain

ΘNKJ(X) =−2ηINρM[K∂
I
ρ

M
J] , (3.44)

which is precisely the fixing (3.34). Next we check the transformation of the field equation of AI

and obtain:

δεDAI = η
IN(∂MT̂NJK− 1

2 ∂Mρ
L

NΘLJK)ε
KDXM ∧AJ +η

IN T̂NJKε
KDAJ +

+ 1
2 η

IN
ε

KAM ∧AM′ (3ρ
J
[K∂JT̂MM′]N−ρ

J
N∂JT̂[KMM′]−3η

PJT̂P[MM′ T̂K]NJ
)
+

+ 1
4 η

IN
ρ

P
Jη

JL
ρ

S
Lε

K
(

ΘPKNFS +ΘSMNΘPM′KAM ∧AM′
)
. (3.45)

Here the underlined contribution is highlighted for later reference, as it would vanish in the case of
a Courant algebroid. We see that the gauge variation of the field equation of A is covariant provided
that

3ρ
J
[K∂JT̂MM′]N−ρ

J
N∂JT̂KMM′−3η

PJT̂P[MM′ T̂K]NJ = 0 . (3.46)

6From now on we denote A+ = A and drop all other ± subscripts.
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This is one of the local coordinate expressions for a DFT algebroid. However, due to (3.10), the last
line in (3.45) does not vanish, thus there is an additional obstruction. Let us look at this obstruction
in more detail:

η
IN

ρ
P

Jη
JL

ρ
S

Lε
K
(

ΘPKNFS +ΘSMNΘPM′KAM ∧AM′
)
=

= η
IN

ε
K
(

η
PS

ΘPKNFS +ΘSMNη
PS

ΘPM′KAM ∧AM′
)
. (3.47)

The first term in the parentheses can be rewritten using (3.44) as

η
PS

ΘPKNFS =−2ρM[K∂
S
ρ

M
N]FS , (3.48)

which vanishes due to the already imposed condition (3.16). The second term in the round brackets
gives explicitly

ΘSMNη
PS

ΘPM′K = 4ηSS′ρL[M∂
S′

ρ
L

N]ρJ[M′∂
S
ρ

J
K] , (3.49)

again after using (3.44). This term has precisely the form of the DFT strong constraint.
What about closure of the algebra of gauge transformations? On XI we have

[δε1 ,δε2 ]X
I = ρ

I
Jε

J
12 , (3.50)

ε
I
12 := Φ

I
KLε

K
1 ε

L
2 , (3.51)

where we used the condition (3.43) to define ε12. On AI we have:

[δε1 ,δε2 ]A
I = δε12AI−∂LΦ

I
JKε

J
1 ε

K
2 DXL +

+3
(
Φ

I
N[MΦ

N
JK]−ρ

N
[M∂NΦ

I
JK]

)
ε

J
1 ε

K
2 AM , (3.52)

where we used (3.43) and (3.46). The last line vanishes identically using (3.43), thus we have the
on-shell closure of the algebra of gauge transformations. However, we obtain consistent gauge
transformations of the field equations only after applying the strong constraint, c.f. the underlined
term in Eq. (3.45).

4. Conclusion and outlook

We have shown how to construct the gauge symmetry of the DFT worldvolume action by pro-
jecting the superfield components and BRST transformations of a Courant sigma-model master BV
action defined over doubled space. We obtained that the algebra of gauge transformations closes
on-shell. However, the field equations transform covariantly only upon the use of a constraint,
which is the analogue of the DFT strong constraint. This is in accord with the statement that the
target space DFT action is invariant under the generalized diffeomorphisms only after using the
strong constraint. Our approach establishes this result at the level of the worldvolume theory.

An interesting question which remains open is whether one can find a modification of the DFT
worldvolume action (3.8) and/or (3.17) in order to achieve gauge invariance without the use of
the strong constraint. There are two main reasons why one should attempt to construct such an
improved DFT action. The first reason is that conjectured non-commutative and non-associative
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closed string backgrounds do not satisfy the strong constraint, and therefore one presumably needs
to go beyond DFT in order to consistently describe such backgrounds. The other reason is that one
would like to use the AKSZ construction in order to obtain an action satisfying the classical master
equation. This would be a first step toward quantization of the (improved) DFT sigma-model.
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